• Title/Summary/Keyword: HDR(high dynamic range)

Search Result 98, Processing Time 0.023 seconds

A Tone Mapping Algorithm Based on Multi-scale Decomposition

  • Li, Weizhong;Yi, Benshun;Huang, Taiqi;Yao, Weiqing;Peng, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1846-1863
    • /
    • 2016
  • High dynamic range (HDR) images can present the perfect real scene and rich color information. A commonly encountered problem in practical applications is how to well visualize HDR images on standard display devices. In this paper, we propose a multi-scale decomposition method using guided filtering for HDR image tone mapping. In our algorithm, HDR images are directly decomposed into three layers:base layer, coarse scale detail layer and fine detail layer. We propose an effective function to compress the base layer and the coarse scale detail layer. An adaptive function is also proposed for detail adjustment. Experimental results show that the proposed algorithm effectively accomplishes dynamic range compression and maintains good global contrast as well as local contrast. It also presents more image details and keeps high color saturation.

HDR 신호를 위한 광전/전광변환 기술 및 표준화 동향

  • Gang, Jeong-Won;Lee, Jin-Ho;Jeon, Dong-San;Go, Hyeon-Seok;Kim, Hwi-Yong
    • Broadcasting and Media Magazine
    • /
    • v.21 no.1
    • /
    • pp.41-50
    • /
    • 2016
  • 비디오의 사실감을 극대화하기 위하여 근래에 HDTV에서 지원하는 명암비(Dynamic Range)보다 넓은 고명암비(HDR, High Dynamic Range)를 제공하기 위한 다양한 연구 및 표준화가 활발하게 진행되고 있다. 본 논문에서는 HDR 신호 처리를 위해 가장 중요한 요소인 광전 및 전광변환 기술과 관련 표준화 동향을 살펴보고자 한다.

Color Noise Reduction Method in Non-constant Luminance Signal for High Dynamic Range Video Service

  • Lee, Jinho;Jun, Dongsan;Kang, Jungwon;Ko, Hyunsuk;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.858-867
    • /
    • 2016
  • A high dynamic range (HDR) video service is an upcoming issue in the broadcasting industry. For compatibility with legacy devices receiving a non-constant luminance (NCL) signal, new tools supporting an HDR video service are required. The current pre-processing chain of HDR video can produce color noise owing to the chroma component down-sampling process for video encoding. Although a luma adjustment method has been proposed to solve this problem, some disadvantages still remain. In this paper, we present an adaptive color noise reduction method for an NCL signal of an HDR video service. The proposed method adjusts the luma component of an NCL signal adaptively according to the information of the luma component from a constant luminance signal and the level of color saturation. Experiment results show that the color noise problem is resolved by applying our proposed method. In addition, the speed of the pre-processing is increased more than two-fold compared to a previous method.

A HDR video tone mapping operator reducing the flickering artifact by using average luminance of frames (프레임 평균 밝기를 이용하여 프레임간 깜박임 현상을 줄이는 HDR 동영상 톤 매핑 방법)

  • Kim, Dae Eun;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.455-456
    • /
    • 2015
  • 본 논문은 HDR(high dynamic range) 동영상을 기존의 LDR(low dynamic range) 디스플레이 단말에 표현하기 위해 톤 매핑을 수행할 때 발생할 수 있는 프레임간 깜박임 현상(flickering artifact)을 줄이는 방법에 관한 연구이다. HDR 동영상의 톤 매핑 문제에 있어 HDR 정지영상을 대상으로 개발된 많은 톤 매핑 방법을 그대로 적용하는 경우 시간 축 정보가 고려되지 않아서 깜박임 현상이 발생하여, 주관적 화질을 떨어뜨리는 결과를 초래한다. 이러한 프레임간 깜박임 현상을 줄이기 위해, 본 논문에서는 프레임의 평균 밝기 정보를 이용하여 HDR 동영상 통 매핑 과정에서 프레임간의 밝기 일관성이 유지하도록 하는 방법을 제안한다.

  • PDF

HDR DISPLAY USING MULTI-PROJECTORS

  • Miyake, Rei;Uranishi, Yuki;Sasaki, Hiroshi;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.755-759
    • /
    • 2009
  • This paper proposes an HDR display system using multi-projectors for presentation of HDR contents to multi-users. An HDR image is resolved by luminance and the resolved images are assigned to several projectors. The proposed system projects the HDR contents onto a large screen, and the system can display the HDR contents to multi-users. The proposed system realized to output the broad luminance by emitting the light of multi-projectors onto the same screen. In addition, tonal steps of the proposed system increase so that other projectors cover the tonal steps in the region where the dynamic range is expanded. In this paper, we indicate an effectiveness of the proposed system.

  • PDF

An Adaptive Tone Reproduction for High Dynamic Range Image

  • Lee, Joo-Hyun;Jeon, Gwang-Gil;Jeon, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.428-437
    • /
    • 2009
  • A high dynamic range (HDR) image can represent real world scenes that have a wide range of luminance intensity. However, compared with the range of real world luminance, conventional display devices have a low dynamic range (LDR). To display HDR images onto conventional displayable devices such as monitors and printers, we propose the logarithmic based global reproduction algorithm that considers the features of the image using reproduction parameters. Based on the characteristics of the image, we first modify the input luminance values for reproducing perceptually tuned images and then obtain the displayable output values directly. The experimental results show that the proposed algorithm achieves good subjective results while preserving details of the image; furthermore, the proposed algorithm has a fast, simple and practical structure for implementation.

Real-Time LDR to HDR Conversion Hardware Implementation using Luminance Distribution (영상의 휘도 분포를 이용한 LDR 영상의 실시간 HDR 변환 하드웨어 구현)

  • Lee, Seung-min;Kang, Bong-soon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.901-906
    • /
    • 2018
  • Due to the development of display technologies for images, the resolution and quality of images are increasing day by day. In accordance with the development of the display technology, researches have been actively conducted on technologies for converting and displaying existing images to higher resolution and quality. Since the results of theses studies are included in the image signal processor, hardware implementation is indispensable. In this paper, we propose a real-time HDR(High Dynamic Range) conversion hardware implementation of LDR(Low Dynamic Range) image using luminance distribution. The proposed method extracts the features of the image using the histogram of the luminance distribution, and extends the luminance and color based on the extracted features. In addition, when the proposed method is designed by hardware IP(Intellectual Property) and its performance is verified, 4K DCI(Digital Cinema Image) can be handled at a rate of 30fps at 265.46MHz.

HDR Video Reconstruction via Content-based Alignment Network (내용 기반의 정렬을 통한 HDR 동영상 생성 방법)

  • Haesoo Chung;Nam Ik Cho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.141-144
    • /
    • 2022
  • 최근 인터넷을 통한 동영상 제공 서비스가 확대됨에 따라 높은 품질의 온라인 컨텐츠에 대한 수요가 급증하고 있다. 그런데 넓은 동적 범위를 표현할 수 있는 High Dynamic Range (HDR) 컨텐츠의 공급은 수요를 따라가지 못하고 있는 실정이다. 본 논문에서는 밝기가 다른 프레임들로 구성된 Low Dynamic Range (LDR) 동영상을 이용해 HDR 영상을 생성하는 방법을 제안한다. 우선, 프레임들 간에 움직임이 존재하기 때문에 정렬 과정을 통해 이웃 프레임들을 중심 프레임에 맞추어 정렬한다. 이때 내용 (content) 기반으로 정렬을 해 정확도를 높이고, 원래 크기의 입력을 그대로 이용하는 모듈을 함께 사용하여 세부 정보도 잘 살려준다. 그리고 나서 잘 정렬된 다중 프레임들을 합쳐서 하나의 HDR 프레임을 생성한다. 실험을 통해 기존 방법들에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

Deep Learning-Based Lighting Estimation for Indoor and Outdoor (딥러닝기반 실내와 실외 환경에서의 광원 추출)

  • Lee, Jiwon;Seo, Kwanggyoon;Lee, Hanui;Yoo, Jung Eun;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.31-42
    • /
    • 2021
  • We propose a deep learning-based method that can estimate an appropriate lighting of both indoor and outdoor images. The method consists of two networks: Crop-to-PanoLDR network and LDR-to-HDR network. The Crop-to-PanoLDR network predicts a low dynamic range (LDR) environment map from a single partially observed normal field of view image, and the LDR-to-HDR network transforms the predicted LDR image into a high dynamic range (HDR) environment map which includes the high intensity light information. The HDR environment map generated through this process is applied when rendering virtual objects in the given image. The direction of the estimated light along with ambient light illuminating the virtual object is examined to verify the effectiveness of the proposed method. For this, the results from our method are compared with those from the methods that consider either indoor images or outdoor images only. In addition, the effect of the loss function, which plays the role of classifying images into indoor or outdoor was tested and verified. Finally, a user test was conducted to compare the quality of the environment map created in this study with those created by existing research.

Multi Scale Tone Mapping Model Using Visual Brightness Functions for HDR Image Compression (HDR 영상 압축을 위한 시각 밝기 함수를 이용한 다중 스케일 톤 맵핑 모델)

  • Kwon, Hyuk-Ju;Lee, Sung-Hak;Chae, Seok-Min;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1054-1064
    • /
    • 2012
  • HDR (high dynamic range) tone mapping algorithms are used in image processing that reduces the dynamic range of an image to be displayed on LDR (low dynamic range) devices properly. The retinex is one of the tone mapping algorithms to provide dynamic range compression, color constancy, and color rendition. It has been developed through multi-scale methods and luminance-based methods. Retinex algorithms still have drawbacks such as the emphasized noise and desaturation. In this paper, we propose a multi scale tone mapping algorithm for enhancement of contrast, saturation, and noise of HDR rendered images based on visual brightness functions. In the proposed algorithm, HSV color space has been used for preserving the hue and saturation of images. And the algorithm includes the estimation of minimum and maximum luminance level and a visual gamma function for the variation of viewing conditions. And subjective and objective evaluations show that proposed algorithm is better than existing algorithms. The proposed algorithm is expected to image quality enhancement in some fields that require a improvement of the dynamic range due to the changes in the viewing condition.