• Title/Summary/Keyword: HDFS Block

Search Result 13, Processing Time 0.017 seconds

Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells (발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능)

  • Lee, Keun-Hyeun;Jeong, Seung-Il;Lee, Chang-Hyun;Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.