Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.341-342
/
2014
지난 10년간 데이터의 폭발적인 증가로 우리는 빅데이터 시대를 맞이하게 되었다. 특히, 최근 몇 년 사이 소셜 네트워크의 발전으로 인해 발생하는 데이터의 양이 증가하면서, 이를 처리하기 위한 시스템으로 하둡이 등장하였다. 이전에는 저장 및 처리할 수 없었던 대용량 데이터를 오픈소스인 하둡의 등장으로 누구나가 대용량 데이터를 처리할 수 있는 시스템을 운영할 수 있게 된 것이다. 대규모 처리 분석을 위한 소프트웨어 프레임워크인 하둡은 클라우드 컴퓨팅의 대표적인 기술로 널리 사용되고 있다. 하둡은 크게 데이터의 저장을 담당하는 HDFS(Hadoop Distribute File System)와 데이터를 처리하는 맵리듀스로 나뉜다. 본 논문에서는 기존의 MapReduce와 차세대 맵리듀스로 불리는 YARN을 비교 분석하고 맵리듀스의 용도와 효율적인 활용방안을 제시한다.
Journal of Korean Institute of Industrial Engineers
/
v.40
no.1
/
pp.34-42
/
2014
SCADA and DCS that have performed automatic control and monitoring activities increase the productivity of enterprise in industries. In such systems, although their performance had been improved, there are still many deficiencies in predictive maintenance which can foresee the risk of any kinds of accidents. Because the data acquisition systems of main facilities are being distributed throughout the whole plant and therefore, integration of data obtained from the systems is very difficult. Accordingly, techniques that acquire meaningful information from the gathered data through realtime analysis still need to be improved. This paper introduces a developed facility monitoring system which can predict equipment failure and diagnose facility status through big data analysis to improve equipment efficiency and prevent safety accidents.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.98-100
/
2012
분산 파일시스템은 네트워크를 통해 여러 대의 서버들이 하나의 파일 시스템을 구성하여 높은 확장성과 고 가용성을 지원한다. 분산 파일 시스템에서는 신뢰성과 고성능이 중요하며 대부분의 분산 파일시스템은 이를 위해 데이터 복제에 의존한다. 그러나 이 방법은 저장 공간의 오버헤드를 증가시키는 단점을 가진다. 이 논문에서는 이 문제점을 해결하고자 대표적인 분산 파일 시스템인 HDFS에 분산 RAID에서의 erasure code로 데이터 복제본을 대체하는 방법으로 가용성과 신뢰성을 유지하면서 저장 공간을 절약하는 방법을 제안한다.
Kim, Heeju;Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.700-703
/
2014
최근 이슈가 되고 있는 하둡(hadoop) 패키지에 접목하여 많은 프로젝트들이 생겨나고 있으며, 이들 중 주요하게 떠오르고 있는 분야가 접근 제어 기술이다. 특히, 인터넷의 발전과 스마트 기기 사용자가 늘어남에 따라 데이터의 양이 증가하여, 데이터의 소유자와 사용자의 필요에 의한 접근 제어 기술이 필요하게 되었다. 본 논문에서는 접근 제어 기술의 필요성을 기반으로 HDFS(Hadoop Distributed File System, 하둡 분산 파일 시스템) 기반의 새로운 데이터 접근 제어 프레임워크를 제안한다. 제안하는 방법은 새로운 메타데이터 저장 모듈과 접근 관리 모듈을 만들어 데이터 접근 제어프레임워크를 구성함으로써, 빅데이터 플랫폼을 사용하는 사용자들을 위한 접근 제어 기능을 제공한다. 제안한 프레임워크는 기존 플랫폼에 추가적인 설치가 필요 없도록 하둡 내부에 설계하여 향후 활용도가 높을 것이라 기대된다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.635-638
/
2014
빅데이터 시대의 대두에 따라 기존의 관계형 데이터베이스로는 처리하기 어려운 형태의 데이터가 발생하였다. 이런 성질의 데이터를 저장, 활용하기 위한 방법으로 Apache 하둡이 널리 사용되고 있다. 기존의 RDBMS 상의 데이터를 하둡 데이터 분석의 원천 데이터로 활용하려고 하는 경우, 혹은 데이터 크기와 복잡도의 증가로 저장방식을 바꿔야 하는 경우 데이터를 HDFS(Hadoop Distributed File System) 으로 전송해야 한다. 본 논문에서는 정형 데이터 수집 모듈인 Sqoop과 Nosqoop4u의 개발을 통하여 데이터 전송 성능을 비교하였다.
Kim, Jong-Chan;An, Jae-Hoon;Kim, Young-Hwan;Jeon, Ki-Man
Journal of the Korea Society of Computer and Information
/
v.20
no.8
/
pp.1-6
/
2015
The MapReduce Program of Hadoop Distributed File System operates on any unspecified nodes due to distributed-parallel process and block replicate for data stability. Since it is difficult to guarantee the cache locality when a Solid State Drive is used as a cache in hadoop, cache hit-rate is decreased. In this paper, we suggest a method to improve cache hit rate by pre-loading the input data of the MapReduce onto the SSD cache. To perform this method, we estimated the blocks that are used on each node by using capacity scheduler and block metadata. Eventually we could increase the performance of SSD cache by loading the blocks onto SSD cache before the Map Task run.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.118-120
/
2012
이 논문에서는 MapReduce 프레임워크를 활용한 기후 시뮬레이션 결과의 데이터분석을 위한 전처리 과정을 다룬다. 이를 위해 기후 시뮬레이션 결과 데이터 셋으로부터 특정변수를 추출하여 자료를 변환한 후 변환된 자료를 HDFS 에 저장하기 위한 과학데이터 필터를 설계한다. 설계된 필터를 통해 저장된 자료는 Hadoop 의 MapReduce 응용을 통해 연도별 통계처리를 분산병렬 방식으로 수행한다.
Nowadays, cloud computing is being adopted for more organizations. However, since cloud computing has a virtualized, volatile, scalable and multi-tenancy distributed nature, it is challenging task to perform attack detection in the cloud following conventional processes. This work proposes a solution which aims to collect web server logs by using Flume and filter them through Spark Streaming in order to only consider suspicious data or data related to denial-of-service attacks and reduce the data that will be stored in Hadoop Distributed File System for posterior analysis with the frequent pattern (FP)-Growth algorithm. With the proposed system, we can address some of the difficulties in security for cloud environment, facilitating the data collection, reducing detection time and consequently enabling an almost real-time attack detection.
A location-aware algorithm is proposed in this study to optimize the system performance of distributed systems for processing big data with low data reliability and application performance. Compared with previous algorithms, the location-aware data block placement algorithm uses data block placement and node data recovery strategies to improve data application performance and reliability. Simulation and actual cluster tests showed that the location-aware placement algorithm proposed in this study could greatly improve data reliability and shorten the application processing time of I/O interfaces in real-time.
The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.