• Title/Summary/Keyword: HDD(hard disk drive)

Search Result 190, Processing Time 0.027 seconds

An performance analysis on SSD caching mechanism in Linux (리눅스 SSD caching mechanism 의 성능 비교 및 분석)

  • Heo, Sang-Bok;Park, Jinhee;Jo, Heeseung
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.62-67
    • /
    • 2015
  • During several decades, hard disk drive(HDD) has been used in most computer systems as secondary storage and, however, the performance enhancement of HDD is limited by its mechanical properties. On the other hand, although the flash memory based solid state drive (SSD) has more advantages over HDD such as high performance and low noise, SSD is still too expensive for common usage and expected to take several years to replace HDD completely. Therefore, SSD caching mechanism using the SSD as a cache of high capacity HDD has been highlighted lately. The representatives of SSD caching mechanisms are typically bcache, dm-cache, Flashcache, and EnhanceIO. Each of them has its own internal mechanism and implementation, and this makes them to show their own pros. and cons. In this paper, we analyze the characteristics of each SSD caching mechanisms and compare the performance of them under various workloads. We expect that our contribution will be useful to enhance the performance of SSD caching mechanisms.

Design and Stability Test of a HDD Hybrid Controller Using Sliding-Mode Control (슬라이딩 모드 제어를 이용한 HDD 하이브리드 제어기 설계 및 안정성 평가)

  • Byun Ji-Young;Kwak Sung-Woo;You Kwan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.671-677
    • /
    • 2004
  • This paper presents the design of a now controller for the read/write head of a hard disk drive. The general controller for seeking is the time-optimal control. However if we use only the time optimal control law, this could be vulnerable to chattering effect. To solve this problem, we propose a modified controller design algorithm in this paper. The proposed controller consists of bang-bang control for seeking and sliding-mode control for tracking. Moreover, to test the robustness and stability of control system, a bounded disturbance is selected to maximize a severity index. Simulation results show the superiority of the proposed controller through comparison with time optimal VSC(variable structure control).

Dynamic response of a HDD pivot ball bearing acted by Hertzian contact force (Hertzian contact force에 의한 HDD pivot ball bearing의 동적 반응 분석)

  • Yoon, Joo Young;Park, No-Cheol;Lim, Gunyeop;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.993-993
    • /
    • 2014
  • Increasing the density magnetic recording of a hard disk drive needs to improve position control of a slider. We have troubles analyzing position of a slider by nonlinear property of pivot ball bearing. Many researches analyze a hard disk drive to change pivot ball bearing part from balls to springs. Pivot ball bearing operates by rotation and movement of balls. This study considers Hertzian contact force when balls contact with outer race to analyze nonlinear movement of a ball bearing. Experiment of this study measures movement of a circular center of a pivot ball bearing. We also verify the simulation results and the experiment results.

  • PDF

Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive (프레임이 적용된 스탬프 베이스의 동특성 분석)

  • Lim, Geonyup;Park, No-Cheol;Park, Kyoung-Su;Kim, Seokhwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

Analysis of Suspension State Matrix to Improve L/UL Performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬의 해석)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Park, Kyung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1272-1275
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. Main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short load and unload process. In this paper, we focus on state matrix, pitch static attitude (PSA), roll static attitude (RSA), loading/unloading contour (LC/ULC), impact force and contact. Stability of slider is mainly determined by PSA and RSA. State matrix by PSA and RSA is also important indicator. Therefore we analyze state matrix of SFF HDD suspension through the LC/ULC.

  • PDF

Effects on TMR and Airflow in HDD Cavity due to Disk Damper Shapes (디스크 댐퍼 현상이 HDD 내부 유동 및 TMR에 미치는 영향)

  • Um, Yo-Han;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • The recording density of a hard disk drive(HDD) has been increased so rapidly that the storage capacity of a commercial HDD for the personal computer already reaches several hundred giga-bytes recently. Many technologies related to the HDD, such as servo, media, actuator dynamics, thermo and fluid dynamics, etc. must be developed together to realize higher recording density. Especially, airflow inside the HDD cavity has been concerned as the rotational speed of the disk increases. Typical problem due to the airflow is the off-track vibration of a head stack assembly(HSA) as the airflow collides with the E-block, suspensions, and sliders, i.e., the flow induced vibration(FIV). This problem is one of the most significant sources of the track mis-registration(TMR) so that it must be resolved. In this study, disk damper shape is modified to minimize the influence of airflow on the HSA. Modified disk dampers, which change the flow field of the inside cavity of a HDD, show good effects not only on the disk vibration but also on the off-track vibration of a HSA. Vibrations of E-block and slider have been measured with LDV and the airflow field inside the HDD cavity has been analyzed with commercial CFD program to verify these effects.

  • PDF

Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF

A Study on the PES Estimation for Developing High-TPI HDD (High TPI HDD 구현을 위한 PES Estimation에 관한 연구)

  • J. S. Koh;S. W. Kang;Y. S. Han;Kim, Y. H.;T. Y. Hwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.319.1-319
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. (omitted)

  • PDF

The Numerical Simulation of the Airflow for Reducing Vibrations of an Actuator in HDDs (하드디스크 드라이브 내부 유동에 의한 액추에이터의 진동 저감을 위한 수치해석 연구)

  • Park, Jae-Hyun;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.664-669
    • /
    • 2003
  • Recently, the recording density of hard disk drives has improved at an annual percentage rate of 100%. Therefore for faster access, higher disk rotational speeds will be required. The influence of the airflow produced by the rotation of a disk on the positioning accuracy has become a serious topic of research and the aerodynamic aspect of hard disk drives is now quite considerable with the increases in recording density and higher rotational speeds. Unsteady airflow in an actual hard disk drive is numerically simulated by using LES(Large Eddy Simulation) technique, we could predicted and aerodynamic mechanism that was related actuators' surroundings in HDD. At a result, with modifying the various shapes of the E-block and Damper, we estimated the characteristic of the influence of airflow in HDDs.

  • PDF