• Title/Summary/Keyword: HDAC

Search Result 176, Processing Time 0.028 seconds

Histone Deacetylation Is Involved in Activation of CXCL10 Upon IFNγ Stimulation

  • Guo, Jin-Jun;Li, Qing-ling;Zhang, Jun;Huang, Ai-Long
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • Histone deacetylase (HDAC) activity is commonly associated with transcriptional repression. However, there is also evidence for a function in transcriptional activation. Previous studies have demonstrated a fundamental role of deacetylase activity in $IFN{\alpha}$-responsive gene transcription. In the case of type II IFN ($IFN{\gamma}$) results are controversial: some genes require HDAC activity, while transcription of others is repressed by HDAC. To investigate the effect of HDAC on transcription of an $IFN{\gamma}$-activated gene, real-time PCR was used to measure CXCL10 mRNA in Hela cells stimulated with $IFN{\gamma}$ in the presence or absence of the HDAC inhibitor TSA. Chromatin imunoprecipitation combined with real-time PCR was used to check acetylation of histone H4 and recruitment of the STAT1 complex to the ISRE locus of the CXCL10 gene. Activation of CXCL10 transcription in response to $IFN{\gamma}$ was paralleled by a decrease in histone H4 acetylation and an increase in recruitment of the STAT1 complex to the CXCL10 ISRE locus. The transcription of CXCL10 and histone H4 deacetylation were blocked by TSA, but the latter had no obvious affect on recruitment of the STAT1 complex. Our data indicate that $IFN{\gamma}$ and STAT-dependent gene transcription requires the participation of HDAC, as does the $IFN{\alpha}$-STAT pathway.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Insulin-like Growth Factor-I Modulates BDNF Expression by Inhibition of Histone Deacetylase in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 히스톤 탈 아세틸 효소의 억제가 인슐린 유사성장인자(IGF-I)에 의한 BDNF 발현 조절에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.879-887
    • /
    • 2017
  • It is well established that brain-derived neurotrophic factor (BDNF) is expressed not only in the brain but also in skeletal muscle, and is required for normal neuromuscular system function. Histone deacetylases (HDACs) and insulin-like growth factor-I (IGF-I) are potent regulators of skeletal muscle myogenesis and muscle gene expression, but the mechanisms of HDAC and IGF-I in skeletal muscle-derived BDNF expression have not been examined. In this study, we examined the effect of IGF-I and suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, on BDNF induction. Proliferating or differentiating C2C12 skeletal muscle cells were treated with increasing concentrations (0-50 ng/ml) of IGF-I in the absence or presence of $5{\mu}M$ SAHA for various time periods (3-24 hr). Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent decrease in BDNF mRNA expression. However, inhibition of HDAC led to a significant increase in the expression of BDNF mRNA levels. In addition, immunocytochemistry revealed high BDNF protein levels in undifferentiated C2C12 skeletal muscle cells, whether untreated, IGF-I-treated, or exposed to SAHA. These results represent the first evidence that IGF-I can suppress the mRNA and protein expression of BDNF; conversely, SAHA attenuates the effects of IGF-I. Consequently, SAHA upregulates BDNF expression in C2C12 skeletal muscle cells.

Effects of Bcl-2 Overexpressing on the Apoptotic Cell Death Induced by HDAC Inhibitors in Human Leukemic U937 Cells (HDAC 저해제에 의한 인체 백혈병 U937 세포의 apoptosis 유발에 미치는 Bcl-2의 영향)

  • Lee, In-Hyuk;Hur, Man-Gyu;Park, Dong-Il;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.552-560
    • /
    • 2007
  • Histone deacetylase (HDAC) is overexpressed in a variety of cancers and is closely correlated with oncogenic factors. HDAC inhibitors such as trichostatin A(TSA) and sodium butyrate (Na-B) have been shown to induce apoptosis in vitro and in vivo in many cancer cells. The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death and Bcl-2 overexpression has been reported to protect against cell death. We previously reported that the apoptotic cell death of human leukemic U937 cells by TSA and Na-B treatment was associated with the down-regulation of Bcl-2 expression and activation of caspases. In the present study, we investigated the effects of Bcl-2 overexpression on the growth inhibition, cell cycle arrest and apoptosis induced by TSA and Na-B in U937 cells. TSA-induced growth inhibition, cell cycle arrest and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells however Na-B did not affected. Induction of apoptosis by TSA was accompanied by down-regulation of Bcl-2 expression, activation of caspase-3, -8 and -9, and degradation of DNA fragmentation factor/inhibitor of caspase-activated DNase, which was blocked by the overexpression of Bcl-2. Collectively, these findings suggest that ectopic expression of Bcl-2 appeared to inhibit TSA-induced apoptosis by interfering with inhibition of Bcl-2 and caspase activation.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus

  • Kim, Buyun;Jha, Sonam;Seo, Ji Hae;Jeong, Chul-Ho;Lee, Sooyeun;Lee, Sangkil;Seo, Young Ho;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.519-526
    • /
    • 2020
  • Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.