• Title/Summary/Keyword: HCoC

Search Result 226, Processing Time 0.026 seconds

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Effect of reaction temperature on the particle size and crystal shape of precipitated calcium carbonate (반응온도가 침강성탄산칼슘의 입도 및 형상에 미치는 영향)

  • 송영준;박찬훈;조동성
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.38-45
    • /
    • 1995
  • The objective of this study was to investigate the effect of temperature on the formation of CaCO, polymorphs(i.e.,calcite, aragonite, vaterite) and on the crystal shape of CaCO,.The reaction systems were rnvestigated at the temperature range of 2.0%-85.3r, at the fixed cmditions ofconcentration and pressure, 2X10-' M, atomospheric pressure, respectively.The reaction systems studied include a Ca(HCO.,),-Air bubble, O Ca(OH)s-CO,, @ Ca(OH),-H,CO, ,Ca(OH1,-Na>CO,, O Ca(OH),-K,CO,, @ Ca(OH),-(NH,),CO,, D CaC1,-Na,CO,, CaC1,-K3C03, 8 CaC1,-(NH,,),CO,, 0 Ca(N0,X-Na,CO,, 03 Ca(N0,X-QCO,. 0 Ca(NO,),-(NH,XCO,. The results obtained are summarizedas follows:Calcite is formed at the temperature range of 2t-80"C and the highest calcite yield was obtained at 30%.Aragonite begins to be formed at the temperature range of 41.0%-53.0%. and the higher temperature is thehigher yield is obtained. pH of the reaction system affect the yield of aragonite, and the yield reaches the highestpercentage at the pH range of 10.0-11.0, and at the conditions of pH 12.3 or over, aragonite is scarcely formed.Vaterlle is fnrmed at the temperature range of 40.0% or less, and transites utterly to calcite within 10-60mmutes in the case of bemg residenced in mother liqmd which C1 is not contained, and within 140hours inthe case of containing CI-.s in the case of containing CI-.

  • PDF

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Sruvey of Raw Silk Reeling Water in Korea (우리나라 제사용수의 실태 조사)

  • Sung, J. C.;Lee, D.;Lee, D. S.;Kho, C. S.;Choi, K. S.;Jou, W. H.
    • Journal of Sericultural and Entomological Science
    • /
    • v.29 no.2
    • /
    • pp.73-81
    • /
    • 1987
  • This investigation was carried cut to obtain the reeling water conditions in Korea. The analyzed items of water were pH, colority, turbidity, acidity, alkalinity, solids electric conductibity hardness and heavy metal ions. About 40% of the reeling water were found to be agreeable, 30% were acceptable provided with some quality control and the others were out of acceptable range mainly based on the M-alkalinity, acidity, pH and total hardness. It was found that there was a following relationship between total hardness and electric conductibity with the relative correlation coefficient r=0.9145. y=15.967+0.22774x Where x, y are electric conductivity and total hardness respectively.

  • PDF

Partial Nitritation in an SBR Reactor by Alkalinity Control (알칼리도 제어에 의한 SBR 반응조에서의 부분아질산화)

  • Lee, Chang-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this study, major parameter of partial nitritation was investigated for the stable operation. In order to establish partial nitritation system, prevailing parameters such as temperature, BA (bicarbonate alkalinity) and pH were evaluated. As a result, it is inferred that appropriate bicarbonate alkalinity ratio (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) drives stable 50% partial nitritation at $32^{\circ}C$ and ambient temperature, respectively. Alkalinity ratio was proposed as new strategy for 50% partial nitritation without pH control in both temperature regimes. Because of the results, it was added amound of BA required only for 50% nitritation to inhibit nitratation. The effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio reached almost 100% when initial bicarbonate alkalinity ratios (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) were 6.8 (R1) and 6.7 (R2), respectively. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) results demonstrated that AOB was the dominant nitrifying bacteria and NOB was negligible after adopting process control.

Modulation Effects of Antioxidant Vitamins on Ochratoxin A-induced Oxidative Toxicity in Mice (마우스에서 Ochratoxin A로 유발된 산화적 독성에 대한 항산화 비타민의 완화작용)

  • Park, Jung-Hyun;Kang, Sung-Jo;Kang, Jin-Soon;Ryu, Jae-Chun;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.831-837
    • /
    • 1999
  • Ochratoxin A (OA), a naturally occurring mycotoxin, has been known to cause renal and hepatic lesion in human and animals. This study was carried out to investigate the modulation effects of antioxidant vitamins on OA-induced lipid peroxidation associated with oxidative damage. Vitamin C (10 mg/kg/day) and vitamin E (63.8 mg/kg/day) were administered by intraperitoneal (i.p.) injection to male ICR mice, and 1 hr later, OA which was dissolved in 0.1 M $NaHCO_3$, treated 4 mg/kg/day by i.p. injection. During 4 days repeated, and then measured superoxide dismutase (SOD) activity, catalase activity and malondialdehyde (MDA) formation in microsomes of liver and kidney. Additionally, the relationship between cell damage and modulation effects of antioxidant vitamins was evaluated by comet assay. Results were as followed; i) SOD, catalase activity and MDA level were significantly increased by OA treated, ii) SOD, catalase activity and MDA formation were significantly decreased by antioxidant vitamins combine treated, iii) blood cell damage associated with lipid peroxidation, induced by OA, also modulated by antioxidant vitamins. These results indicated that antioxidant vitamins might be used for prevention of renal and hepatic damage due to ochratoxicosis.

  • PDF

Geochemical Characteristics of Geothermal Water and Groundwater in the Dongrae Hot-Spring Area (동래온천지역의 지열수와 지하수의 지화학적 특성)

  • Suck Jong Han;Se-Yeong Hamm;Ig Hwan Sung;Byeong Dae Lee;Byong Wook Cho;Myong Hee Cho
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.207-225
    • /
    • 1999
  • Twenty water samples (eleven groundwater and nine geothermal water samples) were collected to elucidate hydrogeochemical characteristics of the groundwater and geothermal water in the Dongrae hot-spring area and its vicinity. Major and minor elements were analyzed for ground and geothermal water samples. Physicochemical properties of the groundwater and the geothermal water were examined and chemical composition of the two waters were compared. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. The groundwaters belong to $Ca-HCO_3$ type, while the geothermal waters belong to Na-Cl type. The Na and Cl concentrations in the Dongrae hot-spring area are higher than those of other granite areas in South Korea. The Na/Cl weight ratio ranges from 0.7 to 1.3 for the geothermal waters. On the phase stability diagram groundwaters fall effectively in the field of stability of kaolinite, while geothermal waters fall in the stability field of microcline or kolinite depending on the chemical composition system. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 115 and $145^{\circ}C$.

  • PDF

Conditions for Ideal Draw Solutes and Current Research Trends in the Draw Solutes for Forward Osmosis Process (정삼투 공정 적용에 적합한 유도 용질의 조건과 최근 동향)

  • Jun, Byung-Moon;Han, Sang-Woo;Kim, Yu-Kyung;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.132-143
    • /
    • 2015
  • Water is an essential resource for humans, but fresh water becomes scarce due to population growth and contamination of limited resources. Membrane technology has been widely used for water treatment, and forward osmosis is a process which does not need high hydraulic pressure for the operation. However, there are needs for (1) development of novel draw solutes causing low internal concentration polarization and reverse salt flux for high water flux, and (2) development of economic recovery method of the draw solutes in the diluted draw solution. Previous researches on the draw solute include $NaHCO_3$ which can be regenerated by about $60^{\circ}C$ heating, sucrose which can make potable water without additional process, and magnetic nanoparticles which can be regenerated by external magnetic field. Using the principles of forward osmosis process, sea water desalination, wastewater treatment, refinement of proteins, energy generation using pressure retarded osmosis process, preparation of diluted fertilizer, and growing algae for biofuel can be conducted. This paper summarizes characteristics of ideal draw solutes, recovery method of the draw solutes, and various application examples.

Evaluation of Hydrogeochemistry of Geothermal Water at Heunghae, Pohang Using Pumping Test Results (양수시험에 의한 포항 흥해지역 심부지열수의 수리지화학적 규명)

  • Cho Byong-Wook;Yun Uk;Song Yoon-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.20-30
    • /
    • 2006
  • Hydrogeochemistry of deep geothermal water (temperature: $42.2-47.9^{\circ}C$) at Heunghae, Pohang was evaluated using core logging, temperature and electrical conductivity (EC) logging before and after pumping tests, chemical analysis of geothermal water with depth, and observation of water quality variations during pumping tests. The geology of the area is composed of highly fractured marine sedimentary rocks. The hydrogeochemistry of geothermal water varies with drilling depth, distance from the coast, and pumping duration. According to the temperature and EC variations during 4 times of pumping tests, main aquifer of the area is considered as the fractured zones (540 to 900 m) developed in rhyolitic rocks. The high content of Na and $HCO_3$ in geothermal water can be explained by the inflow of deep groundwater from inland regulated by dissolution of silicates and carbonates. High TDS, Na and Cl concentrations indicate that the geothermal water was also strongly affected by seawater. The molar ratios of Na:Cl ($0.88{\sim}2.14$) and Br:Cl ($21.0{\sim}24.9{\times}10^{-4}$) deviate from those of seawater (0.84 and $34.7{\times}10^{-4}$, respectively), suggesting that water-rock interaction also plays an important role in the formation of water quality.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.