• Title/Summary/Keyword: HCM Clustering

Search Result 51, Processing Time 0.023 seconds

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Enhanced FCM-based Hybrid Network for Pattern Classification (패턴 분류를 위한 개선된 FCM 기반 하이브리드 네트워크)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1905-1912
    • /
    • 2009
  • Clustering results based on the FCM algorithm sometimes produces undesirable clustering result through data distribution in the clustered space because data is classified by comparison with membership degree which is calculated by the Euclidean distance between input vectors and clusters. Symmetrical measurement of clusters and fuzzy theory are applied to the classification to tackle this problem. The enhanced FCM algorithm has a low impact with the variation of changing distance about each cluster, middle of cluster and cluster formation. Improved hybrid network of applying FCM algorithm is proposed to classify patterns effectively. The proposed enhanced FCM algorithm is applied to the learning structure between input and middle layers, and normalized delta learning rule is applied in learning stage between middle and output layers in the hybrid network. The proposed algorithms compared with FCM-based RBF network using Max_Min neural network, FMC-based RBF network and HCM-based RBF network to evaluate learning and recognition performances in the two-dimensional coordinated data.

Design of Fuzzy Neural Networks Using Data Information and Its Optimization (데이터 정보를 이용한 퍼지 뉴럴 네트워크의 설계와 이의 최적화)

  • Park Geon-Jun;O Seong-Gwon;Kim Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.117-120
    • /
    • 2006
  • 본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 데이터 정보를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 이를 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽함수를 최적으로 동정하여 최적의 퍼지 뉴럴 네트워크를 설계한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 연결 가중치는 오류역전파 알고리즘을 이용하여 학습한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index (최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chan;Oh, Sung-Kwun;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Parallel Structure Modeling of Nonlinear Process Using Clustering Method (클러스터링 기법을 이용한 비선형 공정의 병렬구조 모델링)

  • 박춘성;최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.383-386
    • /
    • 1997
  • In this paper, We proposed a parallel structure of the Neural Network model to nonlinear complex system. Neural Network was used as basic model which has learning ability and high tolerence level. This paper, we used Neural Network which has BP(Error Back Propagation Algorithm) model. But it sometimes has difficulty to append characteristic of input data to nonlinear system. So that, I used HCM(hard c-Means) method of clustering technique to append property of input data. Clustering Algorithms are used extensively not only to organized categorize data, but are also useful for data compression and model construction. Gas furance, a sewage treatment process are used to evaluate the performance of the proposed model and then obtained higher accuracy than other previous medels.

  • PDF

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF

Neuro-Fuzzy model ins using the Hierarchical Clustering (계층적 클러스터링을 이용한 뉴로-퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.279-282
    • /
    • 2002
  • 본 논문에서는 뉴로-퍼지 모델에서 입력 공간의 효율적인 분할을 위하여 계층적 클러스터링방법을 이용하고 있다. 기존의 HCM, FCM 등에서 초기치를 임의로 선택함으로써 데이터의 클러스터를 생성하였으나 제안된 방법은 계층적인 클러스터링을 이용하여 각 데이터간의 정보를 이용하여 클러스터링을 좀더 일반화하였다. 임의로 주어진 초기치에 의하여 클러스터의 형태가 바뀔 수 있는 문제점을 각각의 데이터 정보를 이용함으로써 이러한 문제를 해결하고자 하였다. 이를 자동차 연료 예측 문제에 적용하여 제안된 방법의 유용성을 보이고자 한다.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.