• Title/Summary/Keyword: HC emissions

Search Result 229, Processing Time 0.026 seconds

The Study on the Exhaust Emission Characteristics in Diesel Engine According to Intake Air Mass Flow (흡기유량에 따른 디젤엔진에서의 배출가스 특성에 대한 연구)

  • Kim, Hyung-Jun;Park, Yong-Hee;Eom, Myoung-Do;Ko, Jong-Min;Hwang, Jin-Woo;Lee, Sang-Hyun;Kee, Ji-Hoon;Kim, Jeong-Soo
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • The investigation was conducted to analyze the exhaust emission characteristics in diesel engine according to intake air mass flow. In this study, the test diesel engine with a 5,899 cubic centimeter displacement and power of the 260 ps was used to analyze the emission characteristics according to the intake air mass flow. In addition, the test modes were applied by the ND-13 and ETC mode. In order to analyze the emission characteristics, the engine dynamometer with 440 kW and emission gas analyzer (AMA-4000) were utilized. From the experimental results, it is revealed that the NOx and HC emissions in the intake air mass flow of large amount have high levels compared to those in the intake air mass flow of small amount in the ND-13 mode. However, the PM emission was shown the opposite trend in the NOx and HC emission due to the trade-off relation between the NOx and PM.

The Characteristics of Exhaust Gas Emissions with GTL Fuel (GTL연료의 배출가스 특성 연구)

  • Gwoak, Soon-Chul;Seo, Chung-Yul;Kang, Dae-Il;Park, Jung-Min;Yim, Yoon-Sung;Hwan, Chun-Sik;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Dug;Jung, Choong-Sub;Jang, Eun-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

An Experimental Study on the Performance and Characteristics of Emission for an S.I. Engine with Methanol-Reformulated Fuel (메탄올 개질 연료를 이용한 S.I. 엔진의 성능 및 배기 배출물 특성에 관한 연구)

  • Jang, Yeong-Jun;Choe, Seung-Hwan;Ha, Cheol-Ho;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1193-1200
    • /
    • 2001
  • There are many regulation test methods to be related with engine emissions such as CVS-75, D-13, ECE-15 modes and so on. Most of these modes are consisted of lots of transient conditions that have rapid acceleration, deceleration and cranking modes. In this experimental research, the engine characteristics of cranking, accelerating and power output in a S.I. engine were studied to compare with neat gasoline and alternative fuels of M30 (methanol 30%, aromatic series 32%, non-aromatic 38%) and M50 (methanol 50%, aromatic 30%, non-aromatic 20%) for performance and exhaust emissions. The results show that reformulated methanol fuels are better emissions reduction of 15.7% over than that of neat gasoline fuel especially in HC and CO emissions at cranking mode. And the accelerating performances coincide with the results of distillation curve. CO concentration for M50 fuel is varied in a just little for the condition of slow acceleration. At wide-open throttle condition, brake specific energy consumption of reformulated fuels is increased and thermal efficiency is some what lower than that of gasoline fuel.

The Study on Effect of Exhaust Gas Characteristics according to Aromatic compound Content in Diesel (경유의 방향족 함량 변화가 배출가스에 미치는 영향 연구)

  • Kim, Shin;Min, Kyong-Il;Yim, Eui-Soon;Ha, Jong-Han;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.549-561
    • /
    • 2014
  • According to reports in EU and USA, Aromatic ingredient in diesel estimated the causative agent of air pollution. Because reduction of total aromatic and Poly-aromatic compound content are decreasing environmentally harmful emissions HC, NOx, PM. It is necessary to investigate correlationship between automotive technology and fuel quality in Korea. This study examines emission effect of two representative domestic vehicles(2.2 L for emission of Euro 4, 5) and five kinds of domestic diesel fuel (total aromatic compound content 26, 28, 30 wt% and poly-aromatic compound content 3, 5 wt%). Finally, Environmental impact assessment was studied between vehicle and diesel fuel.

A Study for Developing an Operating Mode-Based Emission Model for Korea (한국형 운행 모드 기반 배출량 산정 모형 개발에 관한 연구)

  • HU, Hyejung;FREY, Christopher;YOON, Chunjoo;YANG, Choongheon;KIM, Jinkook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.180-190
    • /
    • 2016
  • Atmospheric pollutants such as Nitrogen Oxides(NOx), Carbon Monoxide(CO), Carbon Dioxide($CO_2$), Particulate Matter(PM) and Hydrocarbons(HC) come from vehicle exhaust gases. Emission curves based on average travel speeds have been employed for estimating on-road emissions as well as evaluating environmental impacts of transportation plans and policies in Korea. Recently, there is a growing interest in estimation methods of vehicle emissions considering relationship between vehicle dynamic driving characteristics and emissions, and incorporating such emission estimators into traffic simulation models. MOVES Lite, a simplified version of MOVES, is one of the estimation methods. In this study, the authors performed a study to develop an adaptable version of MOVES Lite for Korea, called MOVES Lite-K. Vehicle types, driving characteristics, emission rates, and emission standards of Korea were reflected in MOVES Lite-K. The characteristics of emission calculation of MOVES Lite-K and NIER emission curves were compared and the adaptability of MOVES Lite-K were examined.

An experimental study on characteristics of exhaust emission due to vehicle driving pattern in urban area (도심지 주행패턴에 의한 배출물특성에 관한 실험적 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-54
    • /
    • 1986
  • Driving pattern of gasoline passenger car was measured and analyzed at some areas(6urban area routes, 4 radial routes, 4 circular routes)in Seoul city. Measured items were vehicle speed, engine speed, intake manifold vacuum, and fuel consumption. Driving pattern data were reappearanced with engine dynamometer. Results of this investigation might be summarized as below; 1. When we compared urban area route with radial or circular route in rush hour, it was found that the average vehicle speed was measured to be lower about 25% and fuel consumption to be higher about 12% in urban area route. 2. Average vehicle speed was measured to be higher about 30% and driving resistance output to be higher about 25% in non-rush hour, but average fuel economy was increased a little. 3. On the bases of average fuel economy and characteristics of exhaust emissions, optimum driving vehicle speed was found about 60 km/h in the 4th(top)and about 40km/h in the 3rd in driving of experimental engine. 4. Idling frequency and exhaust emissions of CO,HC were related to idling closely. But exhaust emission of NOx, which had nothing to do with idling frequency, had relation to acceleration time ratio.

  • PDF

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

Experimental Study on the Size Distribution of Diesel Particulate Matter (DPM) (디젤 입자상물질의 크기분포 특성에 관한 실험적 연구)

  • 연익준;권순박;이규원
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Diesel particulate matter (DPM) is known to be one of the major harmful emissions produced by diesel engines. The majority of diesel particles are in the range of smaller than $I{\mu}\textrm{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Diesel particles are known to have deleterious effects upon human health because they penetrate human respiratory tract and have negative effects on the health. The measurement of the number distribution of nanometer size particles (nanoparticles) in the diesel exhaust emission is important in order to evaluate their environmental and health impact, and to develop new types of diesel particulate filters. In this study, we directly sampled particulate matters emitted from a diesel truck mounted on the chassis dynamometer by a flow separator and dilution system, and measured the nanoparticles using two types of differential mobility analyzers combined with a Faraday cup electrometer (FCE) and a condensation particle counter (CPC). The particle size distributions were analyzed by changing engine operation condition, i.e. ratio of engine loading. The total number concentration of particles were increased with the engine loading ratio and the nanoparticles (less than 50nm) were affected by hydrocarbon (HC) concentration in the diesel exhaust.

The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine (커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine (선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF