• 제목/요약/키워드: HBV-X gene

검색결과 12건 처리시간 0.02초

Functions of Hepatitis B Virus- X Gene product

  • 윤영대
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제1회 추계심포지움 and 제2회 생리분자과학연구센터워크숍
    • /
    • pp.39-40
    • /
    • 1993
  • Hepatitis B virus (HBV)is a member of the Hepadna virus family whose members share a characteristic virion structure and genome size, around 3.2kb in a paritially double-stranded form. The genome of HBV contains four overlapping open reading frames designated as P(polymerase). C(core), S(surface antigen)and X. The X gene has potential to encode 154 amino acids protein.

  • PDF

Inhibition of Hepatitis B Virus Replication by in vitro Synthesized RNA

  • Yang, Yeon-Ju;Heo, Young-Shin;Kim, Jeong-Ki;Kim, Sang-Yong;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1385-1389
    • /
    • 2005
  • Human hepatitis B virus (HBV) is a pathogen related to the development of liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, the efficient methods to suppress HBV replication have not been developed yet. Therefore, we have used RNA interference (RNAi) as a potential tool for the suppression of HBV replication. Here, we designed a 21 nt small intefering dsRNA (siRNA) against hepatitis B virus X (HBx) RNA with 3' overhanging ends derived from T7 promoter. It has been reported that HBV X protein plays an important role in HBV gene expression and viral replication. The suppression of HBx gene expression by the 21 nt siRNA was investigated by Northern blot analysis and chloramphenicol acetyl transferase (CAT) assay. The level of HBx mRNA was decreased by siRNA in a dose-dependent manner. We also found that the 21 nt siRNA inhibited the HBV replication in hepatocellular carcinoma cell.

간암치료신약개발 및 이의 제제화 연구 (Replication of Hepatitis B Virus is repressed by tumor suppressor p53)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

Hepatitis B Virus Gene Mutations and Hepatocarcinogenesis

  • Liang, Tao;Chen, En-Qiang;Tang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4509-4513
    • /
    • 2013
  • Chronic hepatitis B virus (HBV) infection has long been the most common cause of hepatocellular carcinoma (HCC). However, some aspects of the pathogenesis of HBV infection and genesis of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) are still inconclusive. An increasing number of published studies indicate that hepatitis B virus mutations are associated with risk of HCC. These variations include, in particular, mutations in ORF S,C,X gene regions. This mini-review summarizes results of clinical studies and molecular mechanisms on the possible relations of HBV mutations with the development of hepatocellular carcinoma.

Phylogenetic Analysis of Hepatitis B Virus Genome Isolated from Korean Patient Serum

  • Kim, Seon-Young;Kang, Hyen-Sam;Kim, Yeon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.823-828
    • /
    • 2000
  • The complete nucleotide sequence of hepatitis B virus DNA isolated from Korean patient serum was determined and characterized, and its phylogenetic relation was then investigated. The viral genome was 3,215 base pairs long and included four well known open reading frames (i.e. surface antigens, core antigens, X protein and DNA polymerase). The sequence of the surface antigen showed that the HBV genome under investigation, designated HBV 315, was characteristic of subtype adr. A phylogenetic analysis using the total genome sequence revealed that HBV315 was grouped into genomic group C together with isolates from Japan, China, Thailand, Polynesia, and New Caledonia. The mean percent similarity between HBV315 and other HBV isolates in genomic group C was 97.25%, and that with other genomic groups ranged from 86.16% to 91.25%. The predicted amino acid sequences of HBV315 were compared with two closely related subtype adr isolates, M38636 and D12980. The results showed that the X gene product was identical in the three strains, while there were significant amino acid sequence differences between HBV315 and M38636 in the Pre-S1 and Pre-S2 regions.

  • PDF

Hepatitis B virus X protein promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating SOCS1

  • Kang, Inho;Kim, Ji Ae;Kim, Jinchul;Lee, Ju Hyeon;Kim, Mi-jee;Ahn, Jeong Keun
    • BMB Reports
    • /
    • 제55권5호
    • /
    • pp.220-225
    • /
    • 2022
  • Hepatocellular carcinoma (HCC), a primary type of liver cancer, is one of the leading causes of cancer related deaths worldwide. HCC patients have poor prognosis due to intrahepatic and extrahepatic metastasis. Hepatitis B virus (HBV) infection is one of the major causes of various liver diseases including HCC. Among HBV gene products, HBV X protein (HBx) plays an important role in the development and metastasis of HCC. However, the mechanism of HCC metastasis induced by HBx has not been elucidated yet. In this study, for the first time, we report that HBx interacts with the suppressor of cytokine signaling 1 (SOCS1) which negatively controls NF-κB by degrading p65, a subunit of NF-κB. NF-κB activates the transcription of factors associated with epithelial-mesenchymal transition (EMT), a crucial cellular process associated with invasiveness and migration of cancer cells. Here, we report that HBx physically binds to SOCS1, subsequently prevents the ubiquitination of p65, activates the transcription of EMT transcription factors and enhance cell migration and invasiveness, suggesting a new mechanism of HBV-associated HCC metastasis.

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

오가피(五加皮)의 항암효과에 관한 연구 (Study on the Anti-Cancer Effect of Acanthopanax Sessiliflorus)

  • 김영철;우홍정;이장훈
    • 대한한의학회지
    • /
    • 제20권3호
    • /
    • pp.54-65
    • /
    • 1999
  • Objectives: Hepatoma is a very serious disease in Korea and vvorldwiclc. Hepatitis B vims (HBV) has proved the most significant cause of hepatoma. We canied out this study to investigate the effect of Acanthopanax sessilifloms on inhibiting cell proliferation and DNA synthesis in HepG2.2.15 cell line and on inhibiting phosphorilation of oncogene (MAP kinase) in NIT/3T3-HBx ceIl. Methods: To investigate the anti-cancer effect of Acanthopanax sessiliflorus, we did the CellTiter 96 Aqueous Non-radioactive Cell Proliferation assay (Promega); MTS/PMS assay, [$^3H$]-thymicline incorporation assay, and we measured the gene expression through westem blotting. Results: Acanthopanax sessiliflorus showed an inhibiting effect on the increase of HepG2.2.15 in the NTS/PMS assay. It also showed an inhibiting effect on DNA synthesis of HepG2.2.15 in the [$^3H$]-thymidine incorporation assay. Acanthopanax sessiliflorus showed an inhibiting effect of phosphorilation of MAP kinase in HBV - X genes. too. Conclusions: The results suggested that this herb had an anti cancer effect. We may discover an effective anti-cancer herb medicine through further studies on this herb medicine.

  • PDF

인진청간탕(茵蔯淸肝湯)의 항암효과(抗癌效果)에 관(關)한 연구(硏究) (Study on the Anti-Cancer Effect of Injinchunggan-tang(Yinchenqinggan-tang))

  • 우홍정;이장훈;김영철
    • 대한한의학회지
    • /
    • 제20권3호
    • /
    • pp.94-104
    • /
    • 1999
  • Objectives: Hepatoma is a very serious disease in Korea and worldwide. Hepatitis B virus (HBV) has proved the most significant cause of hepatoma. We carried out this study to investigate the effect of Injinchunggan-tang (Yinchenqinggan -tang) on inhibiting cell proliferation and DNA synthesis in HepG2.2.15 cell lines and on inhibiting phosphorilation of oncogene (MAP kinase) in NIT /3T3-HEx cells. Methods: First we confinned the Hepatitis B virus producing ability of HepG2.2.15 cells. To investigate the anti-cancer effect of Injinchunggan-tang (Yinchenqinggan-tang), we did the NTS/PMS assay, [3H]-thymidine incorporation assay and transfection of pcDNA-X. We also measured the gene expression through western blotting. Results: Injinchunggan-tang (Yinchenqing gan tang) showed the suppressing effect of HepG2.2.l5 increase in the MTS/PMS assay and the inhibiting effect of DNA synthesis of HepG2.2.15 in the [3H] thymidine incorporation assay. Injinchunggan-tang (Yinchenqinggan-tang) also showed the inhibiting phosphorilation effect of MAP kinase in HBV -X genes. Conclusions: From the above Injinchunggan-tang (Yinchenqinggan-tang) is thought to have an anti-cancer effect on the hepatoma from HBV. It is suggested that further studies on this prescription would give us a better medicine with an anti-cancer effect.

  • PDF