• Title/Summary/Keyword: HBSM

Search Result 2, Processing Time 0.014 seconds

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

A Hybrid Modular Multilevel Converter Topology with an Improved Nearest Level Modulation Method

  • Wang, Jun;Han, Xu;Ma, Hao;Bai, Zhihong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.96-105
    • /
    • 2017
  • In this paper, a hybrid modular multilevel converter (MMC) topology with an improved nearest level modulation method is proposed for medium-voltage high-power applications. The arm of the proposed topology contains N series connected half-bridge submodules (HBSMs), one full-bridge submodule (FBSM) and an inductor. By exploiting the FBSM, half-level voltages are obtained in the arm voltages. Therefore, an output voltage with a 2N+1 level number can be generated. Moreover, the total level number of the inserted submodules (SMs) is a constant. Thus, there is no pulse voltage across the arm inductors, and the SM capacitor voltage is rated. With the proposed voltage balancing method, the capacitor voltage of the HBSM is twice the voltage of the FBSM, and each IGBT of the FBSM has a relatively low switching frequency and an equalized conduction loss. The capacitor voltage balancing methods of the two kinds of SMs are implemented independently. As a result, the switching frequency of the HBSM is not increased compared to the conventional MMC. In addition, according to a theoretical calculation of the total harmonic distortion of the electromotive force (EMF), the voltage quality with the presented method can be significantly enhanced when the SM number is relatively small. Simulation and experimental results obtained with a MMC-based inverter verify the validity of the developed method.