• Title/Summary/Keyword: HBD

Search Result 30, Processing Time 0.038 seconds

Lubricity Characterization of Hydrogenated Biodiesel as an Alternative Diesel Fuel (경유 대체연료로서 수첨바이오디젤의 윤활 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Chung, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • Paraffin bio-based hydrotreated biodiesel(HBD) is originated from vegetable oil(the process can also be applied to animal fat) with the the chemical structure $C_nH_{2n+2}$. In the number of process of the oil or fat, the hydrogenation is significantly important to create a bio-based diesel fuel. This study is focused on lubricity characteristics of BTL diesel blends to use alternative diesel fuel in Korea. The BTL diesel are blended the different volume ratios (HBD 5(5 vol.% HBD - 95 vol.% diesel), HBD 10, HBD 20, HBD 30, HBD 40 and HBD 50. HBD with paraffin compounds showed a very high centane number, low sulfur content and free aromatic compound. Especially, the wear scar of HBD showed poor lubricity compared to automotive diesel due to the fuel composition, low sulfur content and free aromatic compound. Also, the lubricity specification of automotive diesel with different six HBD blends is within the limit by the Korean standards. Finally, HBD as an alternative diesel fuel is challengeable in transportation sector of Korea.

4-Hydroxybenzaldehyde, One of Constituents from Gastrodiae Rhizoma Augments Pentobarbital-induced Sleeping Behaviors and Non-rapid Eye Movement (NREM) Sleep in Rodents

  • Choi, Jae Joon;Kim, Young-Shik;Kwon, Yeong Ok;Yoo, Jae Hyeon;Chong, Myong-Soo;Lee, Mi Kyeong;Hong, Jin Tae;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • In the previous experiments, we reported that ethanol extract of Gastrodiae Rhizoma, the dried tuber of Gastrodia ElataBlume (Orchidaceae) increased pentobarbital-induced sleeping behaviors. These experiments were undertaken to know whether 4-hydroxybenzaldehyde (4-HBD), is one of the major compounds of Gastrodiae Rhizoma increases pentobarbital-induced sleeping behaviors and changes sleep architectures via activating GABAA-ergic systems in rodents. 4-HBD decreased locomotor activity in mice. 4-HBD increased total sleep time, and decreased of sleep onset by pentobarbital (28 mg/kg and 40 mg/kg). 4-HBD showed synergistic effects with muscimol (a GABAA receptor agonist), shortening sleep onset and enhancing sleep time on pentobarbital-induced sleeping behaviors. On the other hand, 4-HBD (200 mg/kg, p.o.) itself significantly inhibited the counts of sleepwake cycles, and prolonged total sleep time and non-rapid eye movement (NREM) in rats. Moreover, 4-HBD increased intracellular Cl levels in the primary cultured cerebellar cells. The protein levels of glutamic acid decarboxylase (GAD) and GABAA receptors subunits were over-expressed by 4-HBD. Consequently, these results demonstrate that 4-HBD increased NREM sleep as well as sleeping behaviors via the activation of GABAA-ergic systems in rodents.

Spray Characteristics of Hydrotreated Biodiesel Blended Fuels

  • Kim, Duckhan;Oh, Sehun;Kim, Seonghwan;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2013
  • Hydrotreated biodiesel (HBD) would be one of the promising alternative fuels instead of current biodiesel. In this study, spray characteristics in terms of spray penetration and spray angle were conducted experimentally including calculated SMDs as well. The ambient pressures of 1, 3, and 5 MPa and injection pressures of 30, 80, and 130 MPa were introduced and the fuels employed were petro-diesel, and 2, 10, 20, 30, and 50% for hydrotreated biodiesel, respectively. The result of this study found that the more HBD blended diesels have the slightly shorter spray tip penetration lengths especially on the lowest injection pressure and at the highest ambient pressure, but have the larger spray angles and SMDs than petro-diesel. Consequently, this study found that HBD has a little bit merits and demerits of macro- and micro- spray patterns compared to petro-diesel.

Analysis on causes of Fault in HBD(Hot Box Detector) (차축온도 검지장치(HBD) 오동작 원인 분석)

  • Kim, Yong-Kyu;Baek, Jong-Hyun;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1193-1194
    • /
    • 2007
  • 2004년 경부고속철도가 개통된 이후, 열차제어시스템에 있어서 크고 작은 여러 가지 문제점이 시스템의 안정화를 위한 초기 단계의 형태로서 발생되었다. 특히 국내에서 처음으로 열차가 300km/h로 운행됨에 따라, 열차의 고속 운행 환경에 대한 운영 및 유지보수의 어려움이 자주 유발되었다. 한 예로 2005년에는 서울에서 약 170km 남쪽에 위치한 칠곡 신호기계실(IEC) 지역에 설치된 선로변 설비인 HBD의 오동작이 발생됨에 따라 관련 설비에 대한 신뢰성은 물론 설비의 기능상의 문제점까지 전면적인 검토를 필요로 하였다. 본 논문에서는 고속선 운영 및 유지보수에 있어서 선로변 설비의 장애 원인을 조사, 분석, 검토함으로서 고속선 열차제어시스템 HBD에 대한 안정적인 운영 및 유지보수를 구현하기 위한 방안 제시를 주요 목적으로 한다.

  • PDF

A Study on the Fuel Characteristics of Hydrotreated Biodiesel(HBD) for Alternative Diesel Fuel (경유 대체연료로서 수첨 바이오디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.508-516
    • /
    • 2011
  • Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure $C_nH_{2n+2}$, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of $C_{15}$ - $C_{18}$ n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.

Effect of deep eutectic solvent (DES) on the extraction of asiaticoside and madecassoside from Centella asiatica (병풀(Centella asiatica)로부터의 asiaticoside와 madecassoside의 추출효율에 미치는 DES의 영향)

  • Jaeyeong Choi;Yuim Jeon;Sung Ho Ha
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.128-134
    • /
    • 2023
  • Centella asiatica (C. asiatica) extracts, including asiaticoside and madecassoside, are used in ointments to treat the wound and atopic dermatitis due to their antibacterial and skin-regenerating effects in Asia. Therefore, research on the cultivation and extraction efficiency of C. asiatica is being actively conducted to increase commercialization efficiency. In this study, various deep eutectic solvents (DESs) were prepared and used as the extraction solvents according to the mole ratio between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). And then, the extraction yields in distilled water (DW) and methanol (MeOH), commonly used extraction solvents for C. asiatica, were compared and analyzed by HPLC in the optimized operating condition. As a result, a mixture of DW and DES at a ratio of 3:7 showed about 1.4 times higher extraction efficiency than MeOH only. Conversely, the extraction efficiency in a mixture of MeOH and DES at a ratio of 3:7 was about 6 % lower than that in MeOH only.

Study on the Utilization of HBD in the Conventional Speed-up Lines (일반철도 고속화 구간에서 차축온도검지장치 활용방안에 대한 연구)

  • Choe, Gwon-Hui;Kim, Yu-Ho;Baek, Seung-Mun;Bing, Gun-Seop
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.233-243
    • /
    • 2012
  • HBD(Hot Box Detector) is a device to monitor temperature rises to inappropriate lubricant use or mechanical defects. If a train operates without recognizing such an effect, it might result in bearing overheating due to defects and cause a dangerous situation that it could derail a train owing to the damage of axles. Now for the Gyeongbu HSL at 300km/h, the laws related to monitoring overheated axle bearings are notified in the Railway Safety Law and the Railway Construction Law. But in case of the conventional speed-up lines that a train operates at 180 to 230 km/h, the revised bill of relevant standards is ongoing. Therefore in this paper we present references and reviews investigated in order to use the optimal HBD in the conventional speed-up lines.

  • PDF

A Study on Efficient Rolling Stock HBD Monitoring Method Using EWMA Technique (EWMA 기법을 적용한 효율적 철도차량 차축온도검지 모니터링 방법 연구)

  • Choi, Seog-Jung;Kim, Moon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.609-617
    • /
    • 2017
  • Railways are one of the safest and most important transportation systems in the world. On the other hand, due to the increasing complexity of the railway system and the running distance of rail vehicles, railway accidents occur continuously every year. In particular, in the case of high-speed trains and freight trains, if the function of the axle bearing is lost due to abnormal overheating of the axle box bearing, the load on the axle becomes uneven. Therefore, abnormal overheating in the train axle box bearings can cause serious accidents or derailments. For this purpose, a Hot Box Detector (HBD) was installed in the track side of a high speed line to detect abnormal overheating. This paper proposes an EWMA technique-based axle temperature monitoring method to detect abnormal overheating quickly and efficiently. A statistical design of the proposed method was also performed. The proposed method has better performance compared to the current method in the case of abnormal overheating and the performance is improved by approximately 170% at the maximum.

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Antifungal effects of synthetic human β-defensin 3-C15 peptide

  • Lim, Sang-Min;Ahn, Ki-Bum;Kim, Christine;Kum, Jong-Won;Perinpanayagam, Hiran;Gu, Yu;Yoo, Yeon-Jee;Chang, Seok Woo;Han, Seung Hyun;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Zhu, Qiang;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objectives: The purpose of this ex vivo study was to compare the antifungal activity of a synthetic peptide consisting of 15 amino acids at the C-terminus of human ${\beta}$-defensin 3 (HBD3-C15) with calcium hydroxide (CH) and Nystatin (Nys) against Candida albicans (C. albicans) biofilm. Materials and Methods: C. albicans were grown on cover glass bottom dishes or human dentin disks for 48 hr, and then treated with HBD3-C15 (0, 12.5, 25, 50, 100, 150, 200, and $300{\mu}g/mL$), CH ($100{\mu}g/mL$), and Nys ($20{\mu}g/mL$) for 7 days at $37^{\circ}C$. On cover glass, live and dead cells in the biomass were measured by the FilmTracer Biofilm viability assay, and observed by confocal laser scanning microscopy (CLSM). On dentin, normal, diminished and ruptured cells were observed by field-emission scanning electron microscopy (FE-SEM). The results were subjected to a two-tailed t-test, a one way analysis variance and a post hoc test at a significance level of p = 0.05. Results: C. albicans survival on dentin was inhibited by HBD3-C15 in a dose-dependent manner. There were fewer aggregations of C. albicans in the groups of Nys and HBD3-C15 (${\geq}100{\mu}g/mL$). CLSM showed C. albicans survival was reduced by HBD3-C15 in a dose dependent manner. Nys and HBD3-C15 (${\geq}100{\mu}g/mL$) showed significant fungicidal activity compared to CH group (p < 0.05). Conclusions: Synthetic HBD3-C15 peptide (${\geq}100{\mu}g/mL$) and Nys exhibited significantly higher antifungal activity than CH against C. albicans by inhibiting cell survival and biofilm.