• Title/Summary/Keyword: HAZOP-study

Search Result 75, Processing Time 0.027 seconds

Deduction of Emergency Stop Situation Factors for Water Electrolysis Facilities (수전해 설비에 대한 비상정지상황 발생 요인 도출)

  • HYEONKI KIM;TAEHUN KIM;KWANGWON RHIE;DOOHYOUN SEO;DONGMIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.722-727
    • /
    • 2023
  • There are various types of hydrogen production methods, but among them, the alkaline water electrolysis method produces hydrogen by electrolyzing water, and unlike other methods, it can produce green hydrogen that does not emit pollutants and greenhouse gases. There are many different potential risk factors inherent in the water electrolysis process. So it is necessary to predict an emergency situation in advance and to safely manage and take countermeasures according to the emergency situation. Korea Gas Safety Corporation (KGS) CODE AH271 stipulates legal matters to secure safety, but it is not detalied. Thus it is necessary to take measures to safely control and manage it according to the situation in which an emergency stop is required. In this study, based on KGS CODE and HAZOP for alkaline water electrolysis facilities, factors that can cause emergency situations were derived and countermeasures were prepared.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

A Study on the Verification Method for Railway System SIL (철도시스템 안전무결성레벨(SIL)의 검증방안에 대한 연구)

  • Park, Young-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.936-940
    • /
    • 2007
  • This paper is about the study on the verification method for railway system SIL which is frequency of hazard, composing Risk, one of the measurement standards for railway system safety. Frequency of hazard can be identified by using FMECA, or HAZOP, and the assessment of identified dangerous failure rate should be done by systematic methods such as FTA. Therefore, this paper provides the hazard identification level for SIL verification and the requirements necessary to verify the integrity of analysis activity.

  • PDF

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

Comparison of Relative Risk before and after SEMI S2-93A Implementation: Using a Semiconductor Plant in a Taiwan's Science Park as an Example

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chihj-Hung;Hwang, Guo-Ji
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.58-73
    • /
    • 2005
  • The objective of this study is to evaluate the equipment risk before and after SEMI S2-93A implementation, thus providing a guideline for safety improvement. Semiconductor Plant A located in Taiwan's Hsinchu Science Based Industrial Park with 147 manufacturing machines was used for risk assessment. This study was carried out in three steps. First, a preliminary hazard analysis was conducted. A detailed process safety evaluation was conducted (Hazard and Operability Study, HAZOP); and finally, the equipment risk comparison before and after Semiconductor Equipment Manufacturing Instruction (SEMI S2-93A) implementation. The preliminary hazard analysis results showed high risk in 21.77% of the manufacturing machines under risk assessment at Plant A. The largest percentage existed in the Diffusion Department. The machine types specified by the hazardous work site review and inspection according to Article 26 of Labor Inspection Regulation (the machines that use such chemicals as, $SiH_4$, HF, HCL, etc. and that are determined to be highly hazardous through preliminary hazard analysis) were added to the detailed process analysis and evaluation. In the third part of this evaluation, the machines at Plant A used for detailed process safety assessment were divided into two groups based on the manufacturing data before and after 1993. The severity, possibility, and actual accident analysis before and after SEMI S2-93A implementation were compared. The Semiconductor Equipment Manufacturing Instruction (SEMI S2-93A) implementation can reduce the severity and possibility of hazard occurrence.

SIS Design for Fuel Gas Supply System of Dual Fuel Engine based on Safety Integrity Level(SIL) (이중연료엔진의 연료가스공급시스템에 대한 안전무결도 기반 안전계장시스템 설계)

  • Kang, Nak-Won;Park, Jae-Hong;Choung, Choung-Ho;Na, Seong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.447-460
    • /
    • 2012
  • In this study, the shutdown system of the fuel gas supply system is designed based on the Safety Integrity Level of IEC 61508 and IEC 61511. First of all, the individual risk($10^{-4}$/year) and the risk matrix which are the risk acceptance criteria are set up for the qualitative risk assessment such as the HAZOP study. The natural gas leakage at the gas supply pipe is identified as the highest risk among the hazards identified through the HAZOP study and as a safety instrumented function the shutdown function for leakage was defined. SIL 2 and PFD($2.5{\cdot}10^{-3}$) for the shutdown function are determined by the layer of protection analysis(LOPA). The shutdown system(SIS) carrying out the shutdown function(SIF) is verified and designed according to qualitative and quantitative requirements of IEC 61508 and IEC 61511. As a result of SIL verification and SIS conceptual design, the shutdown system is composed of two gas detectors voted 1oo2, one programmable logic solver, and two shutdown valve voted 1oo2.

The development of automatic system using multimodel in hazard analysis (위험성 분석에서의 다중모델을 이용한 자동화 시스템의 개발)

  • Kang Kyung Wook;Kang Byung Kwan;Suh Jung Chul;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1997
  • There are many kinds of complicated equipments in the chemical plants. So the chemical plants have high possibility of accidents. Hazard analysis is one of the basic tasks to ensure the safety of chemical plants. However, it has many shortcomings. To overcome the problems, there have been attempts to automate this work by utilizing computer technology, particularly knowledge-based technique. However, many of the past approaches are lacking in properties: safeguard consideration, accident diversity, cause and consequence diversity, pathway leading to accidents, and various hazard analysis reasoning. Therefore, in this study, three analysis algorithms were proposed using multimodel approach, and a hazard analysis system, AHA, was developed on G2. The case study was solved with AHA system successfully.

  • PDF

A Study on the Cost Analysis of risk facilities using e-Consequence Analysis - Focusing Steel pipe Industry (e-CA(e-Consequence Analysis)를 활용한 위험설비의 비용 분석에 관한 연구 : 강관제조업 사례를 중심으로)

  • Kwon, Hyeok Min;Hwang, Yong Woo;Lee, Ik Mo;Chun, Young Woo;Choi, Young Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.3
    • /
    • pp.27-36
    • /
    • 2018
  • The steel pipe manufacturing industry deals with facilities and materials. Especially thermal facilities are close to vapor cloud explosion (VCE) and may cause secondary damage to facilities because they deal with corrosive substances such as hydrofluoric acid, sulfuric acid and acid, fire, explosion, leakage etc. It is in danger. In this study, hazard identification method was conducted using HAZOP techniques and quantitative risk analysis was conducted using e-CA, a program that supports accident impact analysis. Equipment in the influence range of ERPG - 3 was determined to be a facility requiring replacement. It was decided that neutralization is necessary using slaked lime. Based on the cost of loss, We presented the proper replacement which is the timing of the dangerous facility. As a result, It was ideal to replace the facilities with 20 years of heat treatment facilities, one year of hydrofluoric acid storage tank, 20 years of sulfuric acid storage tank, and 5 years of hydrochloric acid storage tank.

A Study on Safety Cos Estimation Using Process Risk Assessment for Polyol Process (polyol공정에 대한 위험성 평가에 의한 안저비용 산정에 관한 연구)

  • Lee, Jun-Suk;Lee, Young-Soon;Park, Young-Ku
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.68-71
    • /
    • 2002
  • A research on accident loss calculation for polyol process without safety management activities, and safety cost estimation using process risk assessment has been implemented. In order to estimate a magnitude of loss, accident scenarios were made by combining result made from HAZOP Study method with accident possibility analysis results implemented with FTA. Also effect assessment was implement for accident consequence of each scenario. And minimum possible loss cost has been calculated when safety investment do or not. Result from cost-benefit analysis was shown as approximately \335 billion(=USS44,000 billion), as cost after subtracting safety management cost from minimum possible loss cost.

A Study on Safety Requirement of ATP/LCS Interface (자동열차방호장치와 건널목보안장치간의 인터페이스 안전요구사항에 관한 연구)

  • SHIN Ducko;LEE Jae-Hoon;LEE Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper, we provide safety requirements and advices to guarantee the safety of an interface in a level crossing system which is an interface between the conventional facilities and the new ATP (Automatic Train Protection) system, as well as we accomplish a safety management for the facilities of a country that has a different standard with already standardized ATP system. The system model has been made based on a safety activity of the international standard, and then a tolerance of a risk by the safety activity through PHA (Preliminary Hazard Analysis) has been analyzed. finally we achieved HIA (Hazard Identification and Analysis) for the assumptions that have been produced from a operating scenario and a functional interface. Thus, the safety requirements for the interface has been provided from the safety plan of HIA, and we showed the safety activity to guarantee the system safety through HIA which was depend on the design.