• Title/Summary/Keyword: HANARO

Search Result 486, Processing Time 0.03 seconds

CONTRIBUTION OF HANARO IRRADIATION TECHNOLOGIES TO NATIONAL NUCLEAR R&D

  • Choo, Kee Nam;Cho, Man Soon;Yang, Sung Woo;Park, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.501-512
    • /
    • 2014
  • HANARO is a multipurpose research reactor located at the Korea Atomic Energy Research Institute (KAERI). Since the commencement of its operation in 1995, various neutron irradiation facilities, such as rabbit irradiation facilities, fuel test loop (FTL) facilities, capsule irradiation facilities, and neutron transmutation doping (NTD) facilities, have been developed and actively utilized for various nuclear material irradiation tests requested by users from research institutes, universities, and industries. Most irradiation tests have been related to national R&D relevant to present nuclear power reactors such as the ageing management and safety evaluation of the components. Based on the accumulated experience as well as the sophisticated requirements of users, HANARO has recently supported national R&D projects relevant to new nuclear systems including the System-integrated Modular Advanced Reactor (SMART), research reactors, and future nuclear systems. This paper documents the current state and utilization of irradiation facilities in HANARO, and summarizes ongoing research efforts to deploy advanced irradiation technology.

Utilization Condition and Effects of HANARO Traffic Card at Pusan Metropolitan City (부산광역시 하나로교통카드 이용실태 및 효과분석에 관한 연구)

  • Lee, W.G.;Go, S.S.;Bae, G.M.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 1998
  • Pusan Metropolitan City has developed 'HANARO Card' system. It is a sort of multi-function card systems which has devised to resolve many traffic problems, to improve public transportation services, to build advanced transit information systems, to encourage reasonable operation of the public transit companies, and to obtain basic informations for devising transportation policies. This study aims at reviewing the systems of 'HANARO Card', analysing the situation of usage of the card, and suggesting some issues for improving the system. Main finding is that the major effects of the introducing HANARO traffic card are convenience (to pay a charge) in using transit, public parking lots, city freeway toll for citizens, and saving in personnel expenses, maintenance expenses for buses, subway and taxi companies. It is also found that HANARO traffic card system needs to be expended to be compatible with other fields of economic activities.

  • PDF

The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility (하나로 유동모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

Flow Analysis of Simulation Nuclear Fuel Loaded in the HANARO Flow Simulation Test Facility (하나로 유동모의 시험장치에 설치되는 모의 핵연료 유동해석)

  • Park Yong-Chul;Cho Yeong-Garp;Wu Jong-Sub
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.43-46
    • /
    • 2002
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is under 24 MWth of power operation since it reached to the initial critical in February, 1995. Many useful experiments should be safely performed to activate the utilization of the HANARO, but there is a radioactive risk of using the HANARO. To reduce the risk, a test facility, which is not reacted by nuclear fuel, is being developed to simulate similar flow characteristics with the HANARO. This paper describes the computational flow analysis to determine each shape of simulating fuels for simulating the flow similarities of 36 elements hexagonal fuels assembly and 18 elements circulating fuels assembly loaded in HANARO. The shares of orifices were determined by the trial and error method and the structural integrities of them were verified by the finite element method assuming that the flow rate and pressure differences of reactor core are constant. The analysis results will be verified with the results of the flow test to be performed after the installation of this test facility.

  • PDF

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

Air Leakage Analysis of Research Reactor HANARO Building in Typhoon Condition for the Nuclear Emergency Preparedness

  • Lee, Goanyup;Lee, Haecho;Kim, Bongseok;Kim, Jongsoo;Choi, Pyungkyu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.354-358
    • /
    • 2016
  • Background: To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition Materials and Methods: MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. Results and Discussion: It was found that the leak rate is $0.1%{\cdot}day^{-1}$ of air, $0.004%{\cdot}day^{-1}$ of noble gas and $3.7{\times}10^{-5}%{\cdot}day^{-1}$ of aerosol during typhoon passing. The air leak rate of $0.1%{\cdot}day^{-1}$ can be converted into $1.36m^3{\cdot}hr^{-1}$, but the design leak rate in HANARO safety analysis report was considered as $600m^3{\cdot}hr^{-1}$ under the condition of $20m{\cdot}sec^{-1}$ wind speed outside of the building by typhoon. Conclusion: Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.