Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.3-6
/
2012
소셜 네트워크와 웹 2.0의 등장은 거대한 데이터 홍수를 초래하였다. 이 와 관련된 다양한 기술들이 연구 개발되고 있으며 특히 동시에 요구되는 data를 처리하기위한 여러 기술이 등장하였다. 본 연구에서는 다양한 BigData 분산처리 기술들중에 가장 각광 받고 있는 Hadoop이라는 기술을 연구 분석할 것이다. 국내에 아직 많은 사용자가 없어 그 존재감이 많이 없다가 요즘 들어 상승하고 있는 추세이며 이러한 Hadoop의 흐름속에 data의 분산과 병렬처리에서 발생되는 문제점을 분석하고 이를 해결할수 있는 모델을 제시하여 새로운 모델의 하둡으로 기본적인 핵심기술인 federation을 쉽게 할 수 있고 향후 이 구조의 기능과 상세모델을 연구하고 구현하여 제안된 연구 구조의 우수성을 입증하고자 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.9
/
pp.2155-2160
/
2014
In this paper, we proposes a new document summarization method using the extracted semantic feature which the semantic feature is extracted by distributed parallel processing based Hadoop. The proposed method can well represent the inherent structure of documents using the semantic feature by the non-negative matrix factorization (NMF). In addition, it can summarize the big data document using Hadoop. The experimental results demonstrate that the proposed method can summarize the big data document which a single computer can not summarize those.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.151-153
/
2012
최근 고속 네트워크와 저장 기술의 발전으로 인하여 대용량 데이터 분산 처리 시스템에 관한 연구가 활발히 진행되고 있다. 또한 서버의 통합을 통해 시스템 자원의 효율적인 활용을 제공할 수 있는 시스템 가상화가 많은 주목을 받고 있다. 그러나 가상 머신 환경에서 대용량 데이터 분산처리 시스템을 구성할 경우 많은 문제가 발생하게 된다. 본 논문에서는 가상 머신 환경에서 Hadoop 클러스터를 활용할 때 가상 데이터 노드의 개수에 따른 I/O 대역폭 최적화에 대한 실험을 하고 평가를 한다. 본 논문에서 수행한 실험 결과는 가상 머신 환경에서 I/O 대역폭 밸런싱(balancing)을 지원하는 Hadoop Scheduler의 개발 연구에 사용될 것이다.
Kim, Jong-Chan;An, Jae-Hoon;Kim, Young-Hwan;Jeon, Ki-Man
Journal of the Korea Society of Computer and Information
/
v.20
no.8
/
pp.1-6
/
2015
The MapReduce Program of Hadoop Distributed File System operates on any unspecified nodes due to distributed-parallel process and block replicate for data stability. Since it is difficult to guarantee the cache locality when a Solid State Drive is used as a cache in hadoop, cache hit-rate is decreased. In this paper, we suggest a method to improve cache hit rate by pre-loading the input data of the MapReduce onto the SSD cache. To perform this method, we estimated the blocks that are used on each node by using capacity scheduler and block metadata. Eventually we could increase the performance of SSD cache by loading the blocks onto SSD cache before the Map Task run.
본 연구는 최근 활성화된 스마트폰 내비게이션의 교통정보를 이용 시 상대적으로 품질이 취약한 지방지역의 빠른길 및 통행시간 정확도를 개선하는 방안에 대한 연구이다. 본 연구에서는 Hadoop기술을 이용하여 교통데이터에 대한 방대한 양의 데이터를 분석 처리한다. 특히, 실시간 교통정보가 제대로 수집되지 않는 지역의 도로 속도 정보에 대한 개선 방안으로 고객 단말로부터 올라오는 위치 데이터를 실시간으로 수집하여 전자지도 기본 속성값을 실시간 통계 데이터로 교체 반영하여 상대적으로 취약한 지방지역의 경로 품질 및 경로 탐색을 개선하는 방안을 제시하였다. 단말로부터 올라오는 많은 양의 GPS 위치정보등 대용량 데이터 처리를 위해 오픈소스프로젝트인 Hadoop플랫폼 환경에서 빅데이터 처리용 오픈소스를 활용하여 고가의 RDBMS를 대체하는 효과와 시간 단축의 효과를 기대할 수 있게 되었다.
인간과 사물, 서비스 세 가지 분산된 환경 요소에 대해 인간의 명시적 개입 없이 상호 협력적으로 센싱, 네트워킹, 정보 처리 등 지능적 관계를 형성하는 사물 공간 연결망인 IoT(Internet of Things)에서 센싱된 정보를 처리하고 서비스하기 위한 환경을 적시적소에 배치(Depolyment) 하기 위하여 클라우드 서비스와의 연동방법에 대해 본 논문에서 연구하였다. Public Cloud환경에서 Hadoop Cluster를 구성하여 IoT 서비스에 적용할 수 있는 통합 환경을 구축하면 폭발적으로 증가하는 IoT 데이터를 저장하고 빠른 시간안에 이를 효과적으로 처리 및 분석하기 위한 시스템 구축이 가능하며 분산 저장소에 저장된 데이터를 분석하고 의미있는 지식을 발견하여 새로운 비즈니스 모델 창출에 기여할 수 있다. 본 논문에서 Public Cloud 환경에서 Hadoop Clouster를 구성하여 IoT에서 생성되는 데이터를 효과적으로 처리하고 분석할 수 있는 방법을 제안한다.
International Journal of Computer Science & Network Security
/
v.22
no.5
/
pp.121-126
/
2022
Hadoop and Apache Spark are Apache Software Foundation open source projects, and both of them are premier large data analytic tools. Hadoop has led the big data industry for five years. The processing velocity of the Spark can be significantly different, up to 100 times quicker. However, the amount of data handled varies: Hadoop Map Reduce can process data sets that are far bigger than Spark. This article compares the performance of both spark and map and discusses the advantages and disadvantages of both above-noted technologies.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.204-226
/
2018
Big data processing applications have been migrated into cloud gradually, due to the advantages of cloud computing. Hadoop Distributed File System (HDFS) is one of the fundamental support systems for big data processing on MapReduce-like frameworks, such as Hadoop and Spark. Since HDFS is not aware of the co-location of virtual machines in the cloud, the default scheme of block allocation in HDFS does not fit well in the cloud environments behaving in two aspects: data reliability loss and performance degradation. In this paper, we present a novel location-aware data block allocation strategy (LDBAS). LDBAS jointly optimizes data reliability and performance for upper-layer applications by allocating data blocks according to the locations and different processing capacities of virtual nodes in the cloud. We apply LDBAS to two stages of data allocation of HDFS in the cloud (the initial data allocation and data recovery), and design the corresponding algorithms. Finally, we implement LDBAS into an actual Hadoop cluster and evaluate the performance with the benchmark suite BigDataBench. The experimental results show that LDBAS can guarantee the designed data reliability while reducing the job execution time of the I/O-intensive applications in Hadoop by 8.9% on average and up to 11.2% compared with the original Hadoop in the cloud.
A large volume of continuously growing BGP data files can raise two technical challenges regarding scalability and manageability. Due to the recent development of the open-source distributed computing infrastructure, Hadoop, it becomes feasible to handle a large amount of data in a scalable manner. In this paper, we present a new Hadoop-based BGP tool (BGPdoop) that provides the scale-out performance as well as the extensible and agile analysis capability. In particular, BGPdoop realizes a query-based BGP record exploration function using Hive on the partitioned BGP data structure, which enables flexible and versatile analytics of BGP archive files. From the experiments for the scalability with a Hadoop cluster of 20 nodes, we demonstrate that BGPdoop achieves 5 times higher performance and the user-defined analysis capability by expressing diverse BGP routing analytics in Hive queries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.