• Title/Summary/Keyword: HADH enzyme

Search Result 3, Processing Time 0.014 seconds

Effect of Freeze-Thaw Process on Myoglobin Oxidation of Pork Loin during Cold Storage (돈육 등심의 냉동 및 해동과정이 냉장저장동안 육색소 산화에 미치는 영향)

  • Jeong Jin-Yeon;Yang Han-Sul;Kang Geun-Ho;Lee Jeong-Ill;Park Gu-Boo;Joo Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • To investigate the effect of ${\beta}$-hydroxyacyl CoA-dehydrogenase(HADH) activity increased by freezed and thaw process on myoglobin(Mb) oxidation without lipid oxidation during, pork loins were collected at postmortem 24 hts and sliced to steaks (3 cm thickness). Samples were packaged in a polyethylene bag and subjected to flesh group (control), one cycle fieezed and thaw group (treatment 1) and two cycles freezed and thaw group (treatment 2), respectively. Samples were measure meat color (CIE $L^*,\;a^*,\;b^*$), the contents(%) of MetMb, thiobarbituric acid reactive substance (TBARS) value and HADH(${\beta}$-hydroxyacyl CoA-dehydrogenase) activity at 0, 3, and 7 days of storage at $4^{\circ}C$. Both treatments showed significantly (p<0.05) lower $L^*$ and higher $L^*$ value compared to those of control at 7 days. On the contrary, MetMb contents(%) of treatments were significantly (p<0.05) higher than those of control during cold storage. However there were no significant (p> 0.05) differences in TBARS values between control and treatments during 7 days. There were significant (p<0.05) differences in HADH activity between control and treatments at 3 days of cold storage. Both treatments showed higher HADH activity compared to those of control. These results suggested that the freezed and thaw process could accelerate meat color deterioration, i.e. increased MetMb percentage without lipid oxidation in pork loin during cold storage. This also implied that autoxidation of Mb in freezed and thaw pork loin was influenced by enzyme-catalysed reactions in the tissue that would lead to decreased OxyMb.

Purification and Characterization of NADH-Dependent Cr(VI) Reductase from Escherichia coli ATCD33456

  • Bae, Woo-Chul;Kang, Tae-Gu;Jung, Jae-Han;Park, Chul-Jae;Choi, Sung-Chan;Jeong, Byeong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.580-586
    • /
    • 2000
  • A soluble Cr(VI) reductase was purified from the Cr(VI) reducing strain Escherichia coli ATCC33456 by ammonium sulfate fractionation, and chromatographies on Q-Sepharose FF, Cibacron blue 3GA dye affinity, Mono-Q 5/5, and Superdex 200 HR 10/30 columns. The estimated molecular mass of the purified enzyme was 27 kDa on SDS-polyacrylamide gel electrophoresis and 54 kDa on gel filtration, thus indicating a dimeric structure. The isoelectric point of the enzyme was pH 4.85. The optimum reaction pH and storage pH were both 7.0, the optimum reaction temperature was $37^{\circ}C$, and the storage temperature was $4^{\circ}C$. NADH and NADPH both served as electron donors for the reductase, with $V_{max}$ of 68.3 ${\mu}M$ Cr(VI)/min/mg protein and Km of 7.6 $\mu$M using HADH, and Vmax of 42.3 ${\mu}M$ Cr(VI)/min/mg protein and Km of 14.6 $\muM$ using NADPH. When 1 mM EDTA was added, the Cr(VI) reducing activity increased 4-fold.

  • PDF

Effect of NADH-Dependent Enzymes Related to Oxygen Metabolism on Elimination of Oxygen-Stress of Bifidobacteria (NADH요구 산소대사관련 효소가 bifidobacteria의 산소스트레스 제거에 미치는 영향)

  • Ahn, Jun-Bae;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.951-956
    • /
    • 2005
  • Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.