• Title/Summary/Keyword: HABITAT CONSERVATION

Search Result 594, Processing Time 0.029 seconds

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Habitat Potential Evaluation Using Maxent Model - Focused on Riparian Distance, Stream Order and Land Use - (Maxent 모형을 이용한 서식지 잠재력 평가 - 하천으로부터의 거리, 하천의 차수, 토지이용을 중심으로-)

  • Lee, Dong-Kun;Kim, Ho-Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.161-172
    • /
    • 2010
  • As the interest on biodiversity has increased around the world, researches about evaluating potential for habitat are also increasing to find and comprehend the valuable habitats. This study focus on comprehending the significance of stream in evaluating habitat's potential. The purpose of this study is to evaluate habitat potential with applying stream as a main variable, and to comprehend the relationship between the variables and habitat potential. Basin is a unit that has hydrological properties and dynamic interaction with ecosystem. Especially, biodiversity and suitability of habitat in basin area has direct correlation with stream. Existing studies also are proposing for habitat potential evaluation in basin unit, they applied forest, slope and road as main variables. Despite stream is considered the most important factor in basin area, researchers haven't applied stream as a main variable. Therefore, in this study, three variables that can demonstrate hydrological properties are selected, which are, riparian distance, stream order and land use disturbance, and evaluate habitat potential. Habitat potential is analyzed by using Maxent (Maximum entropy model), and vertebrate's presence data is used as dependent variables and stream order map and land cover map is used as base data of independent variables. As a result of analysis, habitat potential is higher at riparian and upstream area, and lower at frequently disturbed area. Result indicates that adjacent to stream, upstream, and less disturbed area is the habitat that vertebrate prefer. In particular, mammals prefer adjacent area of stream and forest and reptiles prefer upriver area. Birds prefer adjacent area of stream and midstream and amphibians prefer adjacent area of stream and upriver. The result of this research could help to establish habitat conservation strategy around basin unit in the future.

Development of Evaluation Model on Greenspace for Sustainability of Site-scale Development Projects (단지규모 개발사업의 지속가능성 확보를 위한 녹지 평가 모형 개발)

  • 양병이;이관규
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.97-107
    • /
    • 2000
  • This study aims to develop the model of evaluation on greenspace to increase the sustain ability of the planning and management for site-scale development projects. The results of this study can be summarized as follows: (1) The comprehensive principles of sustainable development projects were established, which include coexistence of man and nature, reflection of ecological principles, minimization of environmental pollution and damage, recycling and reuse of materials. (2) According to established principles, the evaluation criteria were classified into seven categories as follows: retention of ample greenspace, formation of greenspace as a habitat, species diversity of vegetation, consideration of indigenous plants, construction of green network, conservation of greenspace, and reuse of plant materials. (3) As a result of the analysis of questionnaire of experts, evaluation model was worked out with which we can evaluate environmental friendliness greenspace. And, the final evaluation indicators for greenspace are the rate of greeneries volume, securing habitat, indigenous plants, reuse of plant materials, and species diversity of vegetation, and the indicator of greenspace conservation.

  • PDF

Function of Habitat Heterogeneity for the Biodiversity and Demography of Population in Small Mammal Community (소척추동물군집에서 개체군 변동과 생물다양성 유지를 위한 서식지 이질성의 기능)

  • Lee, Sang Don
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.512-523
    • /
    • 1995
  • The central theme of Habital heterogeneity is to provide animals with habital complexity or structural diversity and to allow resource partitioning among individuals. In turn, the leads to population stability because prey can escape more easily with more hiding places causing less population fluctuation. Species diversity is characterized due to more potential niches both horizontally and verticall. Empirically, in homogeneous habitats population was less abundant, reproduction and survival were lower, spacing behavior, competition and dispersal were higher than in heterogeneous habitats. The results imply that diversity and conservation of species can be maintained through providing heterogeneous habitats.

  • PDF

Analysis of Environmental Characteristics for Habitat Conservation and Restoration of Near Threatened Sparganium japonicum (준위협종 긴흑삼릉의 서식지 보전과 복원을 위한 환경 특성 분석)

  • Kim, Seohyeon;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.37-51
    • /
    • 2015
  • Sparganium japonicum Rothert. is designated as a near threatened species by the National Institute of Biological Resources and is restrictively distributed in South Korea. To conserve and restore habitats of this plant, we investigated environmental characteristics and vegetation at five habitats during the growing season. Thirty plant species from seventeen families were found in the S. japonicum community. The species frequently found in this community included Utricularia vulgaris, Potamogeton distinctus, Phragmites japonica, Cicuta virosa, Persicaria thunbergii, Phragmites communis, Hydrilla verticillata. Maximum height of this plant reached at August and average height at five habitats is 120 cm at this time. Water and soil environmental factors showed low values compared with that of other wetlands. S. japonicum lived in not only shallow water level but also deep water level. These results can be helpful for S. japonicum habitat conservation and restoration.

Habitat Preference and Nest Predation Risk in the Blackbird (Turdus merula)

  • Kim, Mi-Ran
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.41-45
    • /
    • 2009
  • For last 150 years, blackbirds have moved from their ancestral habitat, the woodland edge, to man-made habitats such as farmland, parks and gardens. These alternative habitats have become one of main blackbird habitats. I compared density of nests and blackbirds in parks, woodland and campus of University of East Anglia to investigate habitat preference. Blackbirds preferred the area covered by $10\sim50%$ of tree or bush patches for their foraging and nesting sites. Blackbirds were more frequently found near buildings rather than far from buildings. Nest characteristics did not affect predation rate and nest preference. This study suggests that man-made habitats may be important for avoiding predation.

Sustainable Road Construction Techniques with Special Emphasis on the Conservation and Restoration of Ecosystem in Japan (생태계의 보전·복원을 고려한 일본의 환경친화적 도로건설 기술 사례 연구)

  • Sung, Hyun-Chan;Moon, Da-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.74-84
    • /
    • 2003
  • This study focuses on the technology to reduce destruction and damages of an ecosystem in the process of road construction. The authors investigated the ecological conservation activities and restoration technology which were applied to the construction of 2 bridges in Japan. The key results are as following : First, the most important thing in constructing eco-road was the linear design. Second, we need to adopt the environmental construction forms and materials to the design of structure. Finally, we have to use environment-friendly methods for the sake of the ecosystem at the real construction stage. Adopting those technologies has at least a few merits. First, we can achieve out goals : conservation and restoration in the local habitat. Second, we can save money instead of building a eco-bridge. There is a further advantage which makes it possible to develop environment-friendly technologies than before by drawing developers' attention.

Modeling the Spatial Distribution of Black-Necked Cranes in Ladakh Using Maximum Entropy

  • Meenakshi Chauhan;Randeep Singh;Puneet Pandey
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • The Tibetan Plateau is home to the only alpine crane species, the black-necked crane (Grus nigricollis). Conservation efforts are severely hampered by a lack of knowledge on the spatial distribution and breeding habitats of this species. The ecological niche modeling framework used to predict the spatial distribution of this species, based on the maximum entropy and occurrence record data, allowed us to generate a species-specific spatial distribution map in Ladakh, Trans-Himalaya, India. The model was created by assimilating species occurrence data from 486 geographical sites with 24 topographic and bioclimatic variables. Fourteen variables helped forecast the distribution of black-necked cranes by 96.2%. The area under the curve score for the model training data was high (0.98), indicating the accuracy and predictive performance of the model. Of the total study area, the areas with high and moderate habitat suitability for black-necked cranes were anticipated to be 8,156 km2 and 6,759 km2, respectively. The area with high habitat suitability within the protected areas was 5,335 km2. The spatial distribution predicted using our model showed that the majority of speculated conservation areas bordered the existing protected areas of the Changthang Wildlife Sanctuary. Hence, we believe, that by increasing the current study area, we can account for these gaps in conservation areas, more effectively.

Population Structure and Fine-scale Habitat Affinity of Cymbidium kanran Protected Area as a Natural Monument (천연기념물 한란 보호구역의 개체군 구조 및 미세 서식처 선호성)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Kwon, He-Jin;Son, Sung-Won;Lee, Jong-Seok;Cho, Hyun-Je;Bae, Kwan-Ho;Cho, Young-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.176-185
    • /
    • 2014
  • There are no population ecological research on the natural monument (No. 191) Jeju Cymbidium kanran in South Korea. In this study, we analyzed the population structure and fine-scale habitat affinity of C. kanran in Sanghyo-dong, Jejudo Island from Oct. 2013 to Feb. 2014. We observed total of 1,237 individuals (4,341 pseudobulbs) of C. kanran (989.6 population $ha^{-1}$) within (1.25 ha) and only 17 (1.4%) individuals were inflorescent. In 60.9% of the entire populations, disease symptoms such as spots and blight leaves were observed. C. kanran populaton exhibited reverse-J shaped size distribution based on leaf area classes as individual size parameter. The three size related attributes of C. kanran (no. of pseudobulb $r_s$=-0.159, no. of leaves $r_s$=-0.148 and leaf arera $r_s$=-0.114) and soil temperature revealed a negative relationship (p<0.0001). Most of C. kanran (95.4%) were grown under Castamopsis cuspidata and spatially, C. kanran were strongly clumped at all distances. Population characteristics of C. kanran in the study area were likely originated from species habitat affinity and successional environment. Through this study, base line data for C. kanran's habitat monitoring was established and conservation measures based on population characteristics were discussed.