DOI QR코드

DOI QR Code

Analysis of Environmental Characteristics for Habitat Conservation and Restoration of Near Threatened Sparganium japonicum

준위협종 긴흑삼릉의 서식지 보전과 복원을 위한 환경 특성 분석

  • Kim, Seohyeon (Department of Biology Education, Seoul National University) ;
  • Kim, Jae Geun (Department of Biology Education, Seoul National University)
  • Received : 2014.10.15
  • Accepted : 2015.01.20
  • Published : 2015.02.28

Abstract

Sparganium japonicum Rothert. is designated as a near threatened species by the National Institute of Biological Resources and is restrictively distributed in South Korea. To conserve and restore habitats of this plant, we investigated environmental characteristics and vegetation at five habitats during the growing season. Thirty plant species from seventeen families were found in the S. japonicum community. The species frequently found in this community included Utricularia vulgaris, Potamogeton distinctus, Phragmites japonica, Cicuta virosa, Persicaria thunbergii, Phragmites communis, Hydrilla verticillata. Maximum height of this plant reached at August and average height at five habitats is 120 cm at this time. Water and soil environmental factors showed low values compared with that of other wetlands. S. japonicum lived in not only shallow water level but also deep water level. These results can be helpful for S. japonicum habitat conservation and restoration.

Keywords

References

  1. Albay, M. and Akcaalan, R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectumin two Turkish lakes with different mixing regimes. Environ. Monit. Assess. 146(1-3): 171-181. https://doi.org/10.1007/s10661-007-0069-5
  2. Asaeda, T.Rajapakse, L. and Kanoh, M. 2010. Fine sediment retention as affected by annual shoot collapse: Sparganium Erectum as an Ecosystem Engineer in a Lowland Stream. River Res. Appl. 26(9): 1153-1169. https://doi.org/10.1002/rra.1322
  3. Barko, J.Adams, M. and Clesceri, N. 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J. Aquat. Plant Manage. 24(1): 1-10.
  4. Barko, J. W.Gunnison, D. and Carpenter, S. R. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41(1): 41-65. https://doi.org/10.1016/0304-3770(91)90038-7
  5. Barko, J. W. and Smart, R. M. 1981. Sedimentbased nutrition of submersed macrophytes. Aquat. Bot. 10(339-352). https://doi.org/10.1016/0304-3770(81)90032-2
  6. Barko, J. W. and Smart, R. M. 1983. Effects of Organic Matter Additions to Sediment on the Growth of Aquatic Plants. J. Ecol. 71(1): 161-175. https://doi.org/10.2307/2259969
  7. Barrat-Segretain, M. H. 1996. Germination and colonisation dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquat. Bot. 55(1): 31-38. https://doi.org/10.1016/0304-3770(96)01062-5
  8. Barrat-Segretain, M. H.Bornette, G. and Hering-Vilas-Boas, A. 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquat. Bot. 60(3): 201-211. https://doi.org/10.1016/S0304-3770(97)00091-0
  9. Bornette, G. and Puijalon, S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci. 73(1): 1-14. https://doi.org/10.1007/s00027-010-0162-7
  10. Byun C.Kwon GJ.Lee D.Wojdak, J. M and Kim JG. 2008. Ecological assessment of plant succession and water quality in abandoned rice fields. J. Ecol. Environ. 31(3): 213-223. https://doi.org/10.5141/JEFB.2008.31.3.213
  11. Carbiener, R.Tremolieres, M.Mercier, J. L. and Ortscheit, A. 1990. Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio 86(1): 71-88. https://doi.org/10.1007/BF00045135
  12. Cho SI.Cho SJ.Kim BY and Dhayal, M. 2006. Anticancer Activities of Sparganium stoloniferum on the Proliferation of MCF-7 Cells. J. Biomed. Nanotechnol. 2(2): 125-128. https://doi.org/10.1166/jbn.2006.022
  13. Coops, H.van den Brink, F. W. B. and van der Velde, G. 1996. Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquat. Bot. 54(1): 11-24. https://doi.org/10.1016/0304-3770(96)01025-X
  14. De Wilde, M.Sebei, N.Puijalon, S. and Bornette, G. 2014. Responses of macrophytes to dewatering: effects of phylogeny and phenotypic plasticity on species performance. Evol. Ecol. DOI 10.1007/s10682-014-9725-8
  15. DENNY, P. 1980. Solute movement in submerged angiosperms. Biol. Rev. 55(1): 65-92. https://doi.org/10.1111/j.1469-185X.1980.tb00688.x
  16. Dite, D.Pukajova, D. and Slivinsky, J. 2004. Sparganium angustifolium (Sparganiaceae) -a new locality in the Carpathians. Biologia 59(4): 491-492.
  17. Ennabili, A.Ater, M. and Radoux, M. 1998. Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat. Bot. 62(1): 45-56. https://doi.org/10.1016/S0304-3770(98)00075-8
  18. Fraser, L. H. and Karnezis, J. P. 2005. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands 25(3): 520-530. https://doi.org/10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2
  19. Handley, R. J. and Davy, A. J. 2002. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquat. Bot. 73(2): 129-136.
  20. Harms, V. L. 1973. Taxonomic Studies of North-American Sparganium. 1. S. hyperboreum and S. minimum. Can. J. Bot.-Rev. Can. Bot. 51(9): 1629-1641.
  21. Hong MG and Kim JG. 2012. Growth characteristics of cutting culms sectioned at different positions from three reed population. J. Korean Environ. Reveget. Technol. 15(1): 53-62.
  22. Hua, H. M.Yuan, T.Wang, Y. L. and Pei, Y. H. 2007. A new aromatic alkine from the tuber of Sparganium stoloniferum. Fitoterapia 78(3): 274-275. https://doi.org/10.1016/j.fitote.2006.11.014
  23. Islam, A. and Islam, W. 1973. Chemistry of submerged soils and growth and yield of rice. Plant Soil 39(3): 555-565. https://doi.org/10.1007/BF00264173
  24. Jeon SH.Kim H.Nam JM and Kim JG. 2013. Habitat characteristics of sweet flag (Acorus calamus) and their relationships with sweet flag biomass. Landscape Ecol. Eng. 9(1): 67-75. https://doi.org/10.1007/s11355-011-0176-x
  25. John, B. 2004. A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn. 31(1): 125-127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df
  26. Kamphake, L. J.Hannah, S. A. and Cohen, J. M. 1967. Automated analysis for nitrate by hydrazine reduction. Water Res. 1(3): 205-216. https://doi.org/10.1016/0043-1354(67)90011-5
  27. Kaneko, K. and Jinguji, H. 2012. Effects of environmental factors on Sparganium emersum and Sparganium erectum colonization in two drainage ditches with different maintenance. Agri. Sci. 3(4): 538-544.
  28. Kang HC and Joo YK. 1999. The Structural Characteristics in Natural Wetlands and Fitted Depth Zones of Phramites Japonica. J. Korea Inst. Landsc. 17(4): 191-200.
  29. Kankaala, P.Ojala, A.Tulonen, T.Haapamaki, J. and Arvola, L. 2000. Response of littoral vegetation on climate warming in the boreal zone; an experimental simulation. Aquat. Ecol. 34(4): 433-444. https://doi.org/10.1023/A:1011457815299
  30. Kao, J. T.Titus, J. E. and Zhu, W. X. 2003. Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands 23(4): 979-987. https://doi.org/10.1672/0277-5212(2003)023[0979:DNAPRB]2.0.CO;2
  31. Keddy, P. A. 1983. Shoreline vegetation in Axe Lake, Ontario: effects of exposure on zonation patterns. Ecology 64(2): 331-344. https://doi.org/10.2307/1937080
  32. Kim JG.Park JH.Choi BJ.Sim JH.Kwon G J.Lee BA.Lee YW and Ju EJ. 2004. Method in Ecology. Bomoondang, Seoul. (in Korean)
  33. Kim SH.Kim JH and Kim JG. 2011. Classification of small irrigation ponds in western Civilian Control Zone in Korea. J. Wetlands Res. 13(2): 275-289.
  34. Kim SH.Kim JH and Kim JG. 2011. Water characteristics and similarity analysis of wetland plant communities in 4 types of small irrigation ponds in western civilian control zone in Korea. J. Wetlands Res. 13(3): 581-591.
  35. Kim SN and Lee JS. 2003. Ecological characteristics and growth environment of Korean native water plants. J. Kor. Flower. Res. Soc. 11(1): 21-35.
  36. Kwon GJ.Lee BA.Nam JM and Kim JG. 2007. The optimal environmental ranges for wetland plants: 1. Zizania Latifolia and Typha angustigolia. J. Korean Environ. Reveget. Technol. 9: 72-88.
  37. Lee BA.Kwon GJ and Kim JG. 2005. The relationship of vegetation and environmental factors in Wangsuk stream and Gwarim reservoir: I. Water environments. J. Ecol. Field. Biol. 28(6): 365-374. https://doi.org/10.5141/JEFB.2005.28.6.365
  38. Lee SY.Choi SU.Lee JH.Lee DU and Lee KR. 2010. A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 33(4): 515-521. https://doi.org/10.1007/s12272-010-0404-1
  39. Lee YM.Yeo US.Oh DH and Sung GJ. 2011. Annual Changes in Scirpus planiculmis and Environmental Characteristics of the Nakdong River Estuary. J. Wetlands Res. 13(3): 567-579.
  40. Liddicoat, M.Tibbits, S. and Butler, E. 1975. The determination of ammonia in seawater. Limnol. Oceanogr. 20(1): 131-132. https://doi.org/10.4319/lo.1975.20.1.0131
  41. Lim YS. 2012. Distribution Characteristics of Hydrophytes in Korea. Soonchunhyang Univ. Doctorate thesis.
  42. Liu, X.Huang, S. L.Tang, T. F. Z.Liu, X. G. and Scholz, M. 2012. Growth characteristics and nutrient removal capability of plants in subsurface vertical flow constructed wetlands. Ecol. Eng. 44: 189-198. https://doi.org/10.1016/j.ecoleng.2012.03.011
  43. Madsen, T. V. and Cedergreen, N. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshw. Biol. 47(2): 283-291. https://doi.org/10.1046/j.1365-2427.2002.00802.x
  44. Mc Naughton, S. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha Latifolia. Ecology 49(2): 367-369. https://doi.org/10.2307/1934475
  45. Mony, C.Mercier, E.Bonis, A. and Bouzille, J.-B. 2010. Reproductive strategies may explain plant tolerance to inundation: a mesocosm experiment using six marsh species. Aquat. Bot. 92(2): 99-104. https://doi.org/10.1016/j.aquabot.2009.10.011
  46. National Institute of Biological Resources. 2013. Red data book of endangered vascular plants in Korea. Ministry of Environment (in Korean).
  47. Nilsson, C.Jansson, R. and Zinko, U. 1997. Long-term responses of river-margin vegetation to water-level regulation. Science 276(5313): 798-800. https://doi.org/10.1126/science.276.5313.798
  48. Pollux, B. J. A.Luteijn, A.Van Groenendael, J. M. and Ouborg, N. J. 2009. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54(1): 64-76. https://doi.org/10.1111/j.1365-2427.2008.02100.x
  49. Ponnamperuma, F. 1972. The chemistry of submerged soils. Advances in Agronomy 24: 29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  50. Riis, T. 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596(1): 341-351. https://doi.org/10.1007/s10750-007-9107-0
  51. Riis, T.Sand-Jensen, K. and Vestergaard, O. 2000. Plant communities in lowland Danish streams: species composition and environmental factors. Aquat. Bot. 66(4): 255-272. https://doi.org/10.1016/S0304-3770(99)00079-0
  52. Sagova-Mareckova, M. and Kvet, J. 2002. Performance of Sparganium emersum Rehm. shoots in response to sediment quality. Hydrobiologia 479(1): 131-141. https://doi.org/10.1023/A:1021077905924
  53. Sagova-Mareckova, M.Petrusek, A. and Kvet, J. 2009. Biomass production and nutrient accumulation in Sparganium emersum Rehm. after sediment treatment with mineral and organic fertilisers in three mesocosm experiments. Aquat. Ecol. 43(4): 903-913. https://doi.org/10.1007/s10452-008-9214-7
  54. Shin CJ.Nam JM and Kim JG. 2013. Comparison of environmental characteristics at Cicuta virosa habitats, an endangered species in South Korea. J. Ecol. Environ. 36: 19-29. https://doi.org/10.5141/ecoenv.2013.003
  55. Shipley, B.Keddy, P.Moore, D. and Lemky, K. 1989. Regeneration and establishment strategies of emergent macrophytes. J. Ecol. 77(4): 1093-1110. https://doi.org/10.2307/2260825
  56. Shirota, O.Sekita, S.Satake, M.Yan, N. and Hua, W. Y. 1996. Chemical constituents of Chinese folk medicine "San Leng", Sparganium stoloniferum. J. Nat. Prod. 59(3): 242-245. https://doi.org/10.1021/np960160h
  57. Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14(5): 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  58. Spence, D. H. N. 1967. Factors Controlling the Distribution of Freshwater Macrophytes with Particular Reference to the Lochs of Scotland. J. Ecol. 55(1): 147-170. https://doi.org/10.2307/2257723
  59. Sturges, H. A. 1926. The choice of a class interval. J. Am. Stat. Assoc. 21(153): 65-66. https://doi.org/10.1080/01621459.1926.10502161
  60. Sulman, J. D.Drew, B. T.Drummond, C. Hayasaka, E. and Sytsma, K. J. 2013. Systematics, biogeography, and character evolution of Sparganium (Typhaceae): Diversification of a widespread, aquatic lineage. Am. J. Bot. 100(10): 2023-2039. https://doi.org/10.3732/ajb.1300048
  61. Sutherland, W.Adams, W.Aronson, R. Aveling, R.Blackburn, T. M.Broad, S. Ceballos, G.Cote, I.Cowling, R. and Da Fonseca, G. 2009. One hundred questions of importance to the conservation of global biological diversity. Conserv. Biol. 23(3): 557-567. https://doi.org/10.1111/j.1523-1739.2009.01212.x
  62. Sutherland, W. J.Freckleton, R. P.Godfray, H. C. J.Beissinger, S. R.Benton, T. Cameron, D. D.Carmel, Y.Coomes, D. A.Coulson, T. and Emmerson, M. C. 2013. Identification of 100 fundamental ecological questions. J. Ecol. 101(1): 58-67. https://doi.org/10.1111/1365-2745.12025
  63. Ulrich, K. E. and Burton, T. M. 1988. An Experimental Comparison of the Dry-Matter and Nutrient Distribution Patterns of Typha-Latifolia L, Typha-Angustifolia L, Sparganium- Eurycarpum Engelm and Phragmites-Australis (Cav) Trin Exsteudel. Aquat. Bot. 32(1-2): 129-139. https://doi.org/10.1016/0304-3770(88)90093-9
  64. Van der Valk, A. and Welling, C. H. 1988. The development of zonation in freshwater wetlands: an experimental approach. (In During, H. J.Werger, M. J. A. & Willems, H. J. eds., "Diversity and Pattern in Plant Communities"). The Hague SPB Academic Publishing bv. pp. 145-158.
  65. Yang HS.Kim DS and Park SH. 2004. Weeds of Korea 1. Seoul: Leejeonnongupjawondoseo. pp. 137-166.
  66. Yoo YH and Kim HR. 2010. Key factors causing the Euryale ferox endangered hydrophyte in Korea and management strategies for conservation. J. Wetlands Res. 12(3): 49-56.
  67. Yoon J.Kim H.Nam JM and Kim JG. 2011. Optimal environmental range for Juncus effusus, an important plant species in an endangered insect species (Nannopya pygmaea) habitat in Korea. J. Ecol. Field. Biol. 34: 223-235. https://doi.org/10.5141/JEFB.2011.024

Cited by

  1. Establishment strategy of a rare wetland species Sparganium erectum in Korea vol.41, pp.1, 2017, https://doi.org/10.1186/s41610-017-0045-0
  2. Seasonal flooding regime effects on the survival, growth, and reproduction of Bolboschoenus planiculmis under East Asian monsoon vol.285, pp.None, 2015, https://doi.org/10.1016/j.flora.2021.151960