• Title/Summary/Keyword: HA type membrane

Search Result 53, Processing Time 0.028 seconds

Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold

  • Kang, Seung-Hwan;Park, Jun-Beom;Kim, InSoo;Lee, Won;Kim, Heesung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.258-267
    • /
    • 2019
  • Purpose: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (${\beta}$-tricalcium phosphate/hydroxyapatite [${\beta}-TCP/HA$]) and $1{\times}10^5MSCs$, 2) collagen membrane and $1{\times}10^5MSCs$, 3) ${\beta}-TCP/HA+collagen$ membrane and $1{\times}10^5MSCs$, or 4) ${\beta}-TCP/HA$, a chipped collagen membrane and $1{\times}10^5MSCs$. Cellular viability and the cell migration rate were analyzed. Results: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.

A Study on Flow Rate Properties and Optimal Selection of Nitrogen Membrane Module of Hollow Fiber Type (중공사형 질소 분리막 모듈의 최적 선정과 유량특성에 관한 연구)

  • Kim, Jong-Do;Lee, Sangu-Su;Kim, Jeon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.915-922
    • /
    • 2008
  • The gas separation technology using membrane is widely used to refine various gases in many industry fields and recently is being applying in $CO_2$ recovery technology. In the gas and chemical tanker. nitrogen generators for inerting, purging and padding are on board and most of them have membrane modules of hollow fiber type with long life and vibration resisting properties. Because a membrane module is a key component accounting for 50% of total manufacturing cost of nitrogen generator, adequate selection for it is an important problem. In this paper, the flow performance coefficient based on dimension and specification data of membrane module was relatively selected to compare nitrogen generating capacity of module and various performance tests about the selected PARKER ST6010 membrane module were conducted. As a result, the useful coefficient and basic data in selecting a membrane module were achieved.

Detection of Fish Pathogenic Viruses in Seawater Using Negatively Charged Membranes (Negatively Charged Membrane을 이용한 해수 중 어류질병바이러스의 검출)

  • Jee, Bo Young;Kim, Kwang Il;Lee, Soon Jeong;Kim, Ki Hong;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • After an outbreak of viral disease in an aquafarm, release of virus (es) from infected fish into environmental seawater has been suspected. In the present study, we utilized a negatively charged membrane (HA type) as an efficient method for concentration and detection of fish pathogenic viruses, specifically, megalocytivirus and viral hemorrhagic septicemia virus (VHSV) present in field-collected seawater samples or inoculated into seawater artificially. Positively charged viruses adsorbed onto the negatively charged membrane and were eluted with 1 mM NaOH (pH 10.5) following rinsing with 0.5 mM $H_2SO_4$ (pH 3.0). Megalocytivirus and VHSV particles isolated using anegatively charged HA membrane from seawater inoculated with each virus at a concentration of 10 viral particles/mL were of sufficient quantity to show positive results in atwo-step PCR (or RT two-step PCR); however, despite it being negatively charged, a cellulose acetate (CA) membraneshowed negative results. In quantitative PCR, the detection limits of the HA membrane for megalocytivirus and VHSV in seawater were 1.20E+00 viral particles/mL and 1.22E+01 viralparticles/mL, respectively. The calculated mean recovery yields from 1 L seawater spiked with known concentrations of megalocytivirus and VHSV particles were 28.11% and 23.00%, respectively. The concentrate of a 1-L sample of culturing seawater from the aquatank of flounder suffering from VHSV showed clear positive results in PCR when isolated with an HA, but not a CA, membrane. Thus, viral isolation using an HA membrane is a practical and reliable method for detection of fish pathogenic viruses in seawater.

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

Effect of Electrolyte on Preperation of Porous Alumina Membrane by Anodic Oxidation (양극산화에 의한 다공성 알루미나 막의 제조시 전해질의 영향)

  • Lee, Chang-Woo;Hahm, Yeong-Min;Kang, Hyun-Seop;Chang, Yoon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1047-1052
    • /
    • 1998
  • The porous alumina membrane was prepared from aluminum metal(99.8%) by anodic oxidation using DC power supply of constant current mode in aqueous solution of sulfuric, oxalic, phosphoric and chromic acid. Pore size and distribution, membrane thickness, morphology and crystal structure were examined with several anodizing conditions : reaction temperature, electrolyte concentration, current density and electrolyte type. It was found that ultrafiltration membrane was fabricated in electrolyte of sulfuric, and oxalic acid. On the other hand, microfiltration membrane was fabricated in electrolyte of phosphoric, and chromic acid. Also, it was shown that crystal structure of porous alumina membrane prepared in sulfuric, oxalic, and phosphoric acid was amorphous, whereas porous alumina membrane prepared in chromic acid had ${\gamma}$ type of crystal structure.

  • PDF

Comparition of Submerged / Pressurized Type Membrane System by DRF and Long-Term Results in MF Drinking Water Treatment (MF막여과 정수처리에서 장기운전 결과 및 DRF를 이용한 침지식 / 가압식 시스템의 비교 평가)

  • Ha, Keum Ryul;Kim, Kwan Yeop;Kim, Hyo-Sang;Lee, Yong Soo;Song, June Sup;Kim, Chung Hwan;Yeom, Ick Tae;Lee, Yong Hoon;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2008
  • In Korea, most of the drinking water treatment relied upon the availability of the surface water, of which the raw water quality varied significantly by season and location. Therefore, the comparison of two operation modes (Pressurized type and Submerged type membrane system) must be estimated before the long-term establishment of two systems. In this study, two pilot-scale microfiltration systems with the capacity of $50m^3/day$ were installed and operated in two different modes, and the applicability of the system was determined based on the results such as the TMP (Trans-Membrane Pressure) and flux. For quantitatively comparing the two systems, a new concept, DRF (Differential Resistance Fraction) was introduced. The accumulated sum of the permeate after each cycle of chemical cleaning was also used as a tool for the system comparison.

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Analysis of the Separation Using Disc Plate and Frame Type Reverse Osmosis Module (원판틀형 역삼투 모듈을 이용한 분리 특성 해석)

  • Chung, Kun-Yong;Chung, Wook;Won, Jang-Mook;Bae, Seong-Youl;Ha, Baik-Hyon
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.81-88
    • /
    • 1995
  • Separation performance was measured for the disc plate and frame type reverse osmosis module using NaCl and sucrose solutions. An analysis of membrane performance was done following the equations proposed by Kimura-Sourirajan[8]. The membrane permeability was $2.17 \times 10^{-6}$(gmol/$cm^2$-sec-bar) and independent of operating pressure. The effect of concentration polarization for sucrose solution was higher than that of NaCl. Permeation flux for sucrose solution above 40 bar was decreased as operating pressure was increased. Solute rejection for NaCl solution was decreased, but that of sucrose was increased as operating pressure was increased.

  • PDF

Expression and Biochemical Characterization of the Periplasmic Domain of Bacterial Outer Membrane Porin TdeA

  • Kim, Seul-Ki;Yum, Soo-Hwan;Jo, Wol-Soon;Lee, Bok-Luel;Jeong, Min-Ho;Ha, Nam-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic $\alpha$-helical barrel domain and a membrane-embedded $\beta$-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membrane-embedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.