• Title/Summary/Keyword: H4IIE

Search Result 26, Processing Time 0.039 seconds

Antioxidant Activity of Jakwangchalbyeo Extracts in H4IIE Cells (자광찰벼 추출물의 H4IIE 세포에서의 항산화 효과)

  • Chi Hee-Youn;Lee Chang-Ho;Kim Jung-Tae;Kim Sun-Lim;Kim Kwang-Ho;Chung Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.8-11
    • /
    • 2005
  • Experiments were performed to investigate the effects of ethanol fraction of three different rice (Oryzasativa L. var. japonica) grain (Jakwangchalbyeo, red-pericarp glutinous rice; Hwasunchalbyeo, white-pericarp glutinous rice; Ilpumbyeo, white-pericarp non-glutinous rice) extracts on the protection of oxidative stress. Antioxidant activities of ethanol fraction of rice grain extracts were made with MTT cell viability assay in H4IIE cell that is challenged with hydrogen peroxide. Hwasunchalbyeo extract and Ilpumbyeo extract did not show any significant protective effects on the $H_2O_2-induced$ oxidative stress in B4IIE cells, and Jakwangchalbyeo extract improved the cell viability up to $82\%\;and\;74\%$ at concentration of $100{\mu}g/mL$ for 5 h and 24 h treatment, respectively. In conclusion, red-pericarp Jakwangchalbyeo extract as compared with other rice extracts exerted significant inhibitory effects on the hydyogen peroxideinduced oxidative stress in the H4IIE cells.

Role of autophagy in metformin-induced apoptosis of H4IIE hepatocellular carcinoma cells (Metformin에 의해 발생한 H4IIE 간암세포의 세포사멸 과정에서 자가포식의 역할)

  • Baek, Keunho;Park, Deokbae
    • Journal of Medicine and Life Science
    • /
    • v.17 no.2
    • /
    • pp.41-46
    • /
    • 2020
  • Metformin, a predominantly prescribed anti-diabetic drug for decades, has gained new insights for its anti-tumor activity in a variety of cancer cells. Our previous studies also showed the obvious pro-apoptotic activity of metformin and the underlying action mechanisms in hepatocellular carcinoma cells. Together with apoptosis, autophagy is a crucial intracellular process to determine the survival or death of cells under some stressful environments. The present study aimed to determine the role of autophagy in metformin-induced death of H4IIE hepatocellular carcinoma cells. Metformin blocked the formation of autophagosome and the expression of LC3A, generally described as a biomarker of autophagy. Inhibition of AMPK reversed the metformin-induced blockade of autophagy. Antioxidant (NAC) suppressed the metformin-induced cell death but not affected LC3A. The inhibition of protein kinase C totally restored the metformin-suppressed expression of LC3A. In summary, our present study suggests that autophagy is an anti-apoptotic player in metformin-induced apoptosis in H4IIE cells.

Induction of Apoptotic Cell Death by Red Pericarp Rice (Jakwangchalbyeo) Extracts

  • Chi, Hee-Youn;Lee, Chang-Ho;Kim, Kwang-Ho;Kim, Sun-Lim;Chung, Ill-Min
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • The effects of ethanol fractions of three different rice grain extracts, Jakwangchalbyeo, Hwasunchalbyeo, and Ilpumbyeo, on apoptotic cell death in the rat hepatoma H4IIE cell line were investigated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay. One hundred mg/mL Jakwangchalbyeo extract significantly reduced cell viability to 69.5, 57.2, and 46.1% within 24, 48, and 72 hr, respectively. Fluorescence-activated cell sorting (FACS) analyses were also performed to characterize the cell death pattern caused by treatment with the rice grain extracts. Apoptotic cell death was clearly observed with time after treatment with the Jakwangchalbyeo extract. In Western blotting analysis, degradation of the 116 kDa poly-ADP-ribose polymerase (PARP) molecule was observed with concomitant formation of an 89 kDa product 24, 48, and 72 hr after treating cells with the Jakwangchalbyeo extract. This indicates that an apoptotic process caused cell death in these cells. In conclusion, red-pericarp Jakwangchalbyeo extract induced apoptotic cell death in H4IIE cells to a larger extent than the other rice extracts.

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Water Quality Monitoring of the upper region of Wonchun stream using EROD-microbioassay (EROD-microbioassay에 의한 원천천 상류지역 수질조사)

  • 고성룡;정규혁
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.105-109
    • /
    • 2000
  • The purpose of this study is to investigate on the water quality of the upper region of Wonchun stream located in Suwon city by chemical analysis and EROD-microbioassay methods using rat hepatoma cell line H4IIE. The water samples were collected at 6 sampling sites from sept. to Nov. 1999 and determined the quantitative toxic effects. Higher levels of BO $D_{5}$, CO $D_{Cr}$ and CO $D_{Mn}$ were determined at M6 site where the influent contains domestic and industrial wastewater. EROD activity of water samples was ranged from 3.43$\pm$0.08 to 9.05$\pm$0.10 pmol/mg protein/min. High correlation with EROD activities and COD values was observed. From the results, the upper region of Wonchun stream water area was presumed to be highly polluted with various persistent organic chemicals.s.

  • PDF

Repression of γ-Glutamylcysteine Synthetase and Glutathione S-Transferases by Metformin, an Anti-diabetic Agent, in H4IIE Rat Hepatocytes

  • Bae, Eun-Ju;Cho, Min-Joo;Kim, Sang-Geon
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2007
  • Metformin is a drug used to lower blood sugar levels in patients with type 2 diabetes via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). The primary objective of this study was to investigate whether metformin at the pharmacologically effective concentrations affects the expressions of ${\gamma}$-glutamylcysteine synthetase and phase II antioxidant genes in the H4IIE cell. Treatment of the cells with either metformin or 5-aminoimidazole-4-carboxamide riboside (AICAR) abrogated tert-butylhydroxyquinone (t-BHQ) induction of ${\gamma}$-glutamylcysteine synthetase, a rate limiting enzyme of GSH synthesis. The ability of t-BHQ to induce glutathione S-transferases (GSTs), a major class of phase II detoxifying enzymes that playa critical role in protecting cells from oxidative stress or electrophiles, was also inhibited by the agents. Transcriptional gene repression by metformin was verified by the GSTA2 promoter luciferase assay. Moreover, either metformin or AICAR treatment significantly decreased t-BHQ-dependent induction of other GSTs (i.e., $GST{\mu}$ and $GST{\pi}$ forms). Taken together, our data indicate that metformin treatment may result in the repression of ${\gamma}$-glutamylcysteine synthetase and glutathione S-transferase genes possibly via AMPK activation.

Determination of Dioxin-like Components in the School Waste Incinerator Residues by EROD-microbioassay (EROD-microbioassay에 의한 학교 소각로 잔재 중 다이옥신 유사물질의 측정)

  • 정규혁;오승민;윤완진
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.11-17
    • /
    • 2000
  • There are among the most relevant toxic emissions from incinerators such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs). Induction of cytochrome P4501A1 catalyzed 7-ethoxyresorufin O-deethylase(EROD) activity in mammalian cell culture(EROD bioassay) is thought to be a selective and sensitive parameter used for the quantification of dioxin-like components. In this study, the toxic emissions from several school waste incinerators were evaluated by determination of CYPIA catalytic activity and cytotoxicity using cell culture microbioassay. The incinerator residue and soil samples were collected from the schools located in Kyunggi province from April to June 1999. The samples were extracted in a Soxhlet apparatus using toluene for 20 hours. In order to clean-up, concentrated crude extracts were applied to basic alumina column. The EROD activities of extracts in the H4IIE cells were from 1.91$\pm$0.32 ng-TEQ/g to 24.54$\pm$3.48 ng-TEQ/g of biochemical-TEQ value. In soil samples, CYP1A catalytic activity was 0.09~0.64 ng-TEQ/g. EROD bioassay, seems to be a useful short-term bioassay when information about the biological response of complex environmental samples is needed. Although further study is needed, these results indicate that the potent toxic emissions are produced from school waste semi-incinerators.

  • PDF

Effects of Hwangryunhaedok-tang on DNA Damage, Antioxidant Enzymes Expression and Acetylcholinesterase Activity (황연해독탕(黃連解毒湯)의 산화적 DNA 손상에 대한 보호효과 및 항산화효소계의 발현과 Acetylcholinesterase 활성에 미치는 영향)

  • Moon, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • Objectives : In Alzheimer's disease(AD), free radical oxidative stress caused by amyloid beta-peptide may lead to DNA damage, neuronal dysfunction, neurotoxicity and cell death, Hwangryunhaedok-tang(HHT) is traditionally used for the treatment of pyrogenetic diseases. To develop a new anti-AD drug from natural herb, HHT was selected and extracted in this study. Methods : The antioxidant activities of HHT water extract powder were examined by hydroxyl radical-induced DNA strand nicking assay, and antioxidative enzymes expression assay in H4IIE cell. In addition, HHT was examined for the inhibitory effect on the acetylcholinesterase(AChE) using by Ellman's coupled assay. Results: The HHT exhibit DNA protective effect in the hydroxyl radical-induced DNA Strand nicking assay, mRNA expression of superoxide dismutase and glutathione peroxidase were recovered at a normal level by HHT treatment in H4IIE cell. Furthermore, water extract of HHT showed inhibitory effect on AChE activity. Conclusion : These results suggest that HHT may be effective in delaying and preventing AD progression related to the free radical-induced DNA damage and AChE activity.

  • PDF