• 제목/요약/키워드: H3K36 methylation

검색결과 7건 처리시간 0.03초

히스톤 메틸화와 유전자 전사 (Histone methylation and transcription)

  • 김애리
    • 생명과학회지
    • /
    • 제17권4호
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성 (DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection)

  • 전경화;원용성;신은영;조현민;임명구;진형민;박우배
    • Journal of Gastric Cancer
    • /
    • 제6권4호
    • /
    • pp.227-236
    • /
    • 2006
  • 목적: 유전자 메틸화는 유전자의 서열에 영향을 주지 않으면서 유전자의 발현을 억제하고 세포분열 후 그대로 보존되는 후성적 변화이다. 위암조직과 정상위조직에서 hMLH1, p16, p14, COX-2, MGMT, E-cadherin 유전자와 MINT (MINT1, 2, 12, 25, 31)의 메틸화 상태를 검사하여 위암의 발생 과정에서의 작용과 CIMP 및 Helicobacter pylori균 감염을 포함한 임상병리학적인자와의 연관성을 알아보고자 하였다. 대상 및 방법: 위암과 정상위 신선 동결 조직 각각 36예를 대상으로 MSP (methylation-specific PCR)방법을 이용하여 메틸화 상태를 분석하였고 CIMP의 분석은 MINT1, MINT2, MINT12, MINT25, MINT31의 5개 marker를 대상으로 시행하였다. Helicobacter pylori균 감염여부는 Warthin-Starry silver 염색을 통하여 분류하였다. 결과: 위암 관련 유전자인 p14, p16, MGMT, COX-2, E-cadherin, hMLH1의 메틸화는 각각 14예(38.9%), 13예(36.1%), 8예(22.2%), 10예(27.8%), 21예(58.3%), 6예(16.7%)였다. MINT1과 MINT25의 메틸화는 위암조직에서 정상위조직에서보다 통계학적으로 유의하게 높게 관찰되었다. CIMP 양성률은 위암조직에서 44.4%로 높게 나타났으며 CIMP-H 위암은 환자의 연령과 종양크기와 연관이 있었다. CIMP 양성 위암은 p16 유전자의 메틸화와 연관이 있었고 p16 유전자의 메틸화는 조직학적으로 저분화, 미만형, 궤양형성하는 위암에서 낮게 나타났다. MINT1의 메틸화는 Helicobacter pylori균과 연관성이 있었다. 결론: 위암에서 hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT (MINT1, 2, 12, 25, 31)의 불활성화에 DNA 메틸화가 작용함을 알 수 있었고, Helicobacter pylori균에 의한 위암발생에 MINT1의 메틸화가 연관이 있음을 알 수 있었다.

  • PDF

Fine-tuning of gene expression dynamics by the Set2-Rpd3S pathway

  • Lee, Bo Bae;Kim, Ji Hyun;Kim, TaeSoo
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.162-163
    • /
    • 2017
  • RNA polymerase II-interacting the Set2 methyltransferase co-transcriptionally methylates histone H3 at lysine 36 within the body of genes. This modification facilitates histone deacetylation by Rpd3S HDAC in 3' transcribed regions to suppress cryptic initiation and slow elongation. Although this pathway is important for global deacetylation, no strong effects have been seen on genome-wide transcription under optimized laboratory conditions. In contrast, this pathway slows the kinetics of mRNA induction when target genes are induced upon environmental changes. Interestingly, a majority of Set2-repressed genes are overlapped by a lncRNA transcription that targets H3K36 methylation and deacetylation by Rpd3S HDAC to mRNA promoters. Furthermore, this pathway delays the induction of many cryptic transcripts upon environmental changes. Therefore, the Set2-Rpd3S HDAC pathway functions to fine-tune expression dynamics of mRNAs and ncRNAs.

산발성 위암에서 Microsatellite Instability 빈도와 hMLH1 촉진자부위 메칠화 (Microsatellite Instability and Promoter Methylation of hMLH1 in Sporadic Gastric Carcinoma)

  • 김희철;노선애;육정환;오성태;김병식;유창식;김진천
    • Journal of Gastric Cancer
    • /
    • 제3권1호
    • /
    • pp.50-55
    • /
    • 2003
  • Background: An aberrant function of the mismatch repair system has been reported to underlie carcinogenesis in several tumors, including colorectal and gastric carcinomas, and to induce the typical genotype of microsatellite instability (MSI). Purpose: We aimed to determine the frequency of MSI in early-onset sporadic gastric carcinoma and elucidate the role of promoter methylation in hMLH1 as the mechanism of MSI. Materials and Methods: Thirty-six early-onset sporadic gastric carcinomas were analyzed to determine the status of MSI and the frequency of methylation of the promoter region in hMLH1. MSI was determined using five markers recommended by NCI: MSI-H (high), MSI-L (low), and MSS (Microsatellite stable). Methylation specific PCR (MSP) and direct automated genomic sequencing analysis with DNA modified by sodium bisulfite have been performed to confirm promoter region methylation. All the data were analyzed regarding characteristics of molecular changes, and clinicopathologic variables. Results: The microsatellite status was determined as MSI-H in five cases ($13.8\%$), MSI-L in 13 cases ($36.1\%$), and MSS in 18 cases ($50.0\%$). hMLH1 was methylated in seven cases ($19.4\%$). In all cases of MSI-H, promoter of hMLH1 was methylated, and in two of the 13 cases of MSI-L, hMLH1 promoter methylation was identified. Methylation was not found in any cases of MSS. Promoter methylation in hMLH1 was significantly correlated with MSI status (P<0.001). We could not find any relationship between MSI and clinicopathologic parameters. Conclusion: These results suggest that an abnormal function of the mismatch repair system may be associated with gastric carcinogenesis in more than $10\%$ of early-onset gastric carcinomas and MSI appeared to be closely related to the promoter methylation in hMLH1.

  • PDF

Methylation Status of H19 Gene in Embryos Produced by Nuclear Transfer of Spermatogonial Stem Cells in Pig

  • Lee, Hyun-Seung;Lee, Sung-Ho;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.67-75
    • /
    • 2011
  • The faulty regulation of imprinting gene lead to the abnormal development of reconstructed embryo after nuclear transfer. However, the correlation between the imprinting status of donor cell and preimplantation stage of embryo development is not yet clear. In this study, to determine this correlation, we used the porcine spermatogonial stem cell (pSSC) and fetal fibroblast (pFF) as donor cells. As the results, the isolated cells with laminin matrix selection strongly expressed the GFR ${\alpha}$-1 and PLZF genes of SSCs specific markers. The pSSCs were maintained to 12 passages and positive for the pluripotent marker including OCT4, SSEA1 and NANOG. The methylation analysis of H19 DMR of pSSCs revealed that the zinc finger protein binding sites CTCF3 of H19 DMRs displayed an androgenic imprinting pattern (92.7%). Also, to investigate the reprogramming potential of pSSCs as donor cell, we compared the development rate and methylation status of H19 gene between the reconstructed embryos from pFF and pSSC. This result showed no significant differences of the development rate between the pFFs ($11.2{\pm}0.8%$) and SSCs ($13.3{\pm}1.1%$). However, interestingly, while the CTCF3 methylation status of pFF-NT blastocyst was decreased (36.3%), and the CTCF3 methylation status of pSSC-NT blastocyst was maintained. Therefore, this result suggested that the genomic imprinting status of pSSCs is more effective than that of normal somatic cells for the normal development because the maintenance of imprinting pattern is very important in early embryo stage.

Potential role of the histone chaperone, CAF-1, in transcription

  • Kim, Hye-Jin;Seol, Ja-Hwan;Cho, Eun-Jung
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.227-231
    • /
    • 2009
  • The eukaryotic genome forms a chromatin structure that contains repeating nucleosome structures. Nucleosome packaging is regulated by chromatin remodeling factors such as histone chaperones. The Saccharomyces cerevisiae H3/H4 histone chaperones, CAF-1 and Asf1, regulate DNA replication and chromatin assembly. CAF-1 function is largely restricted to non-transcriptional processes in heterochromatin, whereas Asf1 regulates transcription together with another H3/H4 chaperone, HIR. This study examined the role of the yeast H3/H4 histone chaperones, Asf1, HIR, and CAF-1 in chromatin dynamics during transcription. Unexpectedly, CAF-1 was recruited to the actively transcribed region in a similar way to HIR and Asf1. In addition, the three histone chaperones genetically interacted with Set2-dependent H3 K36 methylation. Similar to histone chaperones, Set2 was required for tolerance to excess histone H3 but not to excess H2A, suggesting that CAF-1, Asf1, HIR, and Set2 function in a related pathway and target chromatin during transcription.

Gastrokine 1 Expression in the Human Gastric Mucosa Is Closely Associated with the Degree of Gastritis and DNA Methylation

  • Choi, Won Suk;Seo, Ho Suk;Song, Kyo Young;Yoon, Jung Hwan;Kim, Olga;Nam, Suk Woo;Lee, Jung Yong;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • 제13권4호
    • /
    • pp.232-241
    • /
    • 2013
  • Purpose: Gastrokine 1 plays an important role in gastric mucosal defense. Additionally, the Gastrokine 1-miR-185-DNMT1 axis has been shown to suppress gastric carcinogenesis through regulation of epigenetic alteration. Here, we investigated the effects of Gastrokine 1 on DNA methylation and gastritis. Materials and Methods: Expression of Gastrokine 1, DNMT1, EZH2, and c-Myc proteins, and the presence of Helicobacter pylori CagA protein were determined in 55 non-neoplastic gastric mucosal tissue samples by western blot analysis. The CpG island methylation phenotype was also examined using six markers (p16, hMLH1, CDH1, MINT1, MINT2 and MINT31) by methylation-specific polymerase chain reaction. Histological gastritis was assessed according to the updated Sydney classification system. Results: Reduced Gastrokine 1 expression was found in 20 of the 55 (36.4%) gastric mucosal tissue samples and was closely associated with miR-185 expression. The Gastrokine 1 expression level was inversely correlated with that of DNMT1, EZH2, and c-Myc, and closely associated with the degree of gastritis. The H. pylori CagA protein was detected in 26 of the 55 (47.3%) gastric mucosal tissues and was positively associated with the expression of DNMT1, EZH2, and c-Myc. In addition, 30 (54.5%) and 23 (41.9%) of the gastric mucosal tissues could be classified as CpG island methylation phenotype-low and CpG island methylation phenotype-high, respectively. Reduced expression of Gastrokine 1 and miR-185, and increased expression of DNMT1, EZH2, and c-Myc were detected in the CpG island methylation phenotype-high gastric mucosa. Conclusions: Gastrokine 1 has a crucial role in gastric inflammation and DNA methylation in gastric mucosa.