• Title/Summary/Keyword: H2S sensing

Search Result 211, Processing Time 0.043 seconds

Investigation of the Different Control Approaches for a Remote Sensing Satellite Attitude Control

  • Won, Chang-Hee;Lee, Jeong-Sook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.35-40
    • /
    • 1998
  • A nonlinear attitude model of a satellite with thrusters, magnetic torquers and a reaction wheel cluster is developed. Then the linearized version of this satellite attitude model is derived far the attitude hold mode. For comparison purpose, various control methods are considered for attitude control of a satellite. We consider a proportional derivative controller which is actually used in the remote sensing satellite, KOMPSAT. Then a comparison is made with an H$_2$controller, an H$\sub$$\infty$/ controller, and a mixed H$_2$/ H$\sub$$\infty$/ controller. The analysis and numerical studies show that the proportional derivative controller's performance is limited in the sense that the pitch angle cannot approach zero. The simulations also show that among three control methods (H$_2$control, H$\sub$$\infty$/ control, and mixed H$_2$/ H$\sub$$\infty$/ control) H$_2$control has the fastest response time, H$\sub$$\infty$/ control has the slowest and mixed H$_2$/ H$\sub$$\infty$/ control comes in between the first two control methods. On the other hand, H$\sub$$\infty$/ control used least amount of control effort while H$_2$control required the most.

  • PDF

Gas sensing pattern in chungkukjang production using household fermentation system (가정용 발효기를 이용한 청국장 제조과정의 가스감지 패턴)

  • Jung, H.C.;Choi, S.Y.;Kim, J.B.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • The sensing system was designed and fabricated to investigate the ferment environment of soybeans. $NH_3$ gas was saturated after about 7 h and $CO_2$ gas was reached the peak after about 8 h in the inoculation of Bacillus subtilis. However, times that $CO_2$ gas and $NH_3$ gas were reached maximum value without Bacillus subtilis were about 15 h and 18 h, respectively. The sample that inoculated Bacillus subtils had deeper taste than one without it. We found that the peak time of $CO_2$ gas means the starting time of fermentation. If we control the operating time after the start of fermentation, it is expected to make a suitable Chungkukjang to individual preference.

Embedded Software Development for MSC on KOMPSAT-2

  • Heo, H.P.;Kong, J.P.;Yong, S.S.;Kim, Y.S.;Park, J.E.;Youn, H.S.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1093-1095
    • /
    • 2003
  • MSC(Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. MSC system includes main control unit, called SBC(Single Board Computer). SBC controls all the sub-units of MSC system and communicates with spacecraft bus. The software developed for SBC should be reliable and autonomous to support various kinds of imaging missions. It is being developed using VxWorks real-time operating system to manage all tasks for all units efficiently. In this paper, the characteristics of the embedded software on the MSC system will be presented. It covers the hardware related characteristics like the BSP(Board Support Package), device driver and code patch mechanism.

  • PDF

Gas Sensing Property of SnO2 Nanoparticles Synthesized by Flame Spray Pyrolysis (화염 분무 열분해법에 의해 합성된 SnO2 나노입자의 가스 감응 특성)

  • Kim, Hong-Chan;Shin, Dong-Wook;Hong, Seong-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.626-631
    • /
    • 2012
  • $SnO_2$ nanoparticles were synthesized by flame spray pyrolysis, which were directly deposited on Pt interdigitated substrates. Gas sensing performance was evaluated for various gases such as $H_2$, CO, $H_2S$, and $NH_3$, and it was compared with that of commercial $SnO_2$ nanopowder. The synthesis of $SnO_2$ nanoparticles was also conducted in various solvents. As a result, the primary particle size was changed with the solvent of precursor solution, and their $H_2$ sensing properties were significantly affected.

Preparation of ZnO Powders by Hydrazine Method and Its Sensitivity to C2H5OH (하이드라진 방법에 의한 ZnO 미분말의 합성 및 에탄올 감응성)

  • Kim, Sun-Jung;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.628-633
    • /
    • 2008
  • ZnO nanopowders were synthesized by the sol-gel method using hydrazine reduction, and their gas responses to 6 gases (200 ppm of $C_2H_5OH$, $CH_3COCH_3$, $H_2$, $C_3H_8$, 100 ppm of CO, and 5 ppm of $NO_2$) were measured at $300\;{\sim}\;400^{\circ}C$. The prepared ZnO nanopowders showed high gas responses to $C_2H_5OH$ and $CH_3COCH_3$ at $400^{\circ}C$. The sensing materials prepared at the compositions of [$ZnCl_2$]:[$N_2H_4$]:[NaOH] = 1:1:1 and 1:2:2 showed particularly high gas responses ($S\;=\;R_a/R_g,\;R_a$ : resistance in air, $R_g$ : resistance in gas) to 200 ppm of $C_2H_5OH$($S\;=\;102.8{\sim}160.7$) and 200 ppm of $CH_3COCH_3$($S\;= 72.6{\sim}166.2$), while they showed low gas responses to $H_2$, $C_3H_8$, CO, and $NO_2$. The reason for high sensitivity to these 2 gases was discussed in relation to the reaction mechanism, oxidation state, surface area, and particle morphology of the sensing materials.

A study on the fabrication and properties of $TiO_2$ thin films by Sol-Gel Method (Sol-Gel 법에 의한 $TiO_2$ 박막의 제조 및 물성에 관한 연구)

  • You, D.H.;Kim, J.S.;Kang, D.H.;Kim, Y.H.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.59-62
    • /
    • 1992
  • In this study, $TiO_2$ thin films are fabricated by Sol-Gel method and dielectric, electric and humidity sensing properties have been investigated. The structure of Sol can be changed by controlling for hydrolysis reaction condition. The uniformity of the surface on $TiO_2$ thin films is confirmed by SEM. The permittivity of $TiO_2$ thin films increases according to heat treatment temperature, whereas the conductivity of $TiO_2$ thin films decreases according to heat treatment temperature, As the results of measuring humidity sensing properties of $TiO_2$ thin films fabricated as humidity sensor, it is confirmed to have good humidity sensing properties in high humidity and low frequency.

  • PDF

Gas Sensing Properties of Pt Doped Fe2O3 Nanoparticles Fabricated by Sol-Gel Method (Sol-Gel 방법을 이용하여 제작된 Pt이 첨가된 Fe2O3 나노 입자의 가스 감지 특성)

  • Jang, Min-Hyung;Lim, Yooseong;Choi, Seung-Il;Park, Ji-In;Hwang, Namgyung;Yi, Moonsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.288-293
    • /
    • 2017
  • $Fe_2O_3$ is one of the most important metal oxides for gas sensing applications because of its low cost and high stability. It is well-known that the shape, size, and phase of $Fe_2O_3$ have a significant influence on its sensing properties. Many reports are available in the literature on the use of $Fe_2O_3$-based sensors for detecting gases, such as $NO_2$, $NH_3$, $H_2S$, $H_2$, and CO. In this paper, we investigated the gas-sensing performance of a Pt-doped ${\varepsilon}$-phase $Fe_2O_3$ gas sensor. Pt-doped $Fe_2O_3$ nanoparticles were synthesized by a Sol-Gel method. Platinum, known as a catalytic material, was used for improving gas-sensing performance in this research. The gas-response measurement at $300^{\circ}C$ showed that $Fe_2O_3$ gas sensors doped with 3%Pt are selective for $NO_2$ gas and exhibita maximum response of 21.23%. The gas-sensing properties proved that $Fe_2O_3$ could be used as a gas sensor for nitrogen dioxide.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

NH3 Sensing Properties of SnO Thin Film Deposited by RF Magnetron Sputtering

  • Vu, Xuan Hien;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.272-272
    • /
    • 2014
  • SnO thin films, 100 nm in thickness, were deposited on glass substrates by RF magnetron sputtering. A stack structure of $SnO_2/SnO$, where few nanometers of $SnO_2$ were determined on the SnO thin film by X-ray photoelectron spectroscopy. In addition, XPS depth profile analysis of the pristine and heat treated thin films were introduced. The electrical behavior of the as-sputtered films during the annealing was recorded to investigate the working conditions for the SnO sensor. Subsequently, The NH3 sensing properties of the SnO sensor at operating temperature of $50-200^{\circ}C$ were examined, in which the p-type semiconducting sensing properties of the thin film were noted. The sensor shows good sensitivity and repeatability to $NH_3$ vapor. The sensor properties toward several gases like $H_2S$, $CH_4$ and $C_3H_8$ were also introduced. Finally, a sensing mechanism was proposed and discussed.

  • PDF