• Title/Summary/Keyword: H2 spillover

Search Result 22, Processing Time 0.025 seconds

Hydrogen Spillover Kinetics - I. Effect of Surface Morphology on [$Pt/MoO_{3}$] Catalyst (수소 spillover 속도론 - I. $Pt/MoO_{3}$ 촉매의 표면 형상 변화)

  • Kim Jin Gul;Kim Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.491-494
    • /
    • 2004
  • [ $H_2$ ] uptake into $Pt/MoO_{3}$ was enhanced with an increased calcination temperature. Selective CO pulse chemisorption demonstrated that free Pt surface area was decreased as calcination temperature was increased. Characteristic techniques were dedicated to elucidate the closer contact at adlineation sites between Pt and $MoO_3$ substrates. Calcination resulted in supplying the hydrogen access into more $MoO_3$ particles and controlling the kinetics of hydrogen uptake.

  • PDF

Effect of Temperature on $H_2$ Spillover over $Pt/H_xMoO_3$ (Pt를 담지한 $H_xMoO_3$촉매의 수소 이동 속도에 미치는 온도의 영향)

  • 김진걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.114-117
    • /
    • 2004
  • Rates of $H_2$ uptake into $Pt/MoO_3$ were measured for the noncalcined and $200^{\circ}C$ calcined $Pt/MoO_3$. Amount of $H_2$ uptake for $200^\circ{C}$calcined $Pt/MoO_3$ was greater than the amount of noncalcined $Pt/MoO_3$. From these two experiments, it was found that the rates of $H_2$ desorption were proportional to the increase of desorption temperature. XPS demonstrated that Cl reduced more faster in ITR after calcination at $200^{\circ}C$. This inducd smaller amount of residual chlorine at adlineation sites between Pt and $MoO_3$ substrates. This resulted in opening the more channel of hydrogen pathway into more $MoO_3$particles and controled the kinetics of hydrogen uptake.

  • PDF

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst (Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과)

  • Ho Joon Seo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.674-678
    • /
    • 2023
  • The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.

Pt/MOF-5 Hybrid Composite Encapsulated with Microporous Carbon Black to Improve Hydrogen Storage Capacity and Hydrostability

  • Yeo, Sin-Yeong;Gwak, Seung-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.2-45.2
    • /
    • 2011
  • Metal organic frameworks (MOF) have generated considerable interests as a potential candidate for hydrogen storage owing to their extremely high surface-to-volume ratio and low density. In this study, Pt nanoparticles of about 3 nm in size were introduced outside MOF-5 [$Zn_4O$(1,4-benzenedicarbocylate)3], which was then encapsulated with hydrophobic microporous carbon black (denoted CB@Pt/MOF-5) in order to enhance hydrogen uptake capacity without decreasing the specific surface area and hydrostability. To study the chemical composition, morphology, crystal information, and properties of the synthesized material, a variety of techniques is employed, including WXRD, XPS, ICP-AES, FE-SEM, HR-TEM, and N2 adsorption-desorption, confirming the formation of novel hybrid composite designated CB@Pt/MOF-5 with highly crystalline structure, large specific surface area and pore volume. In addition, $H_2$ storage capacity for resulting material was measured using magnetic suspension microbalance at 77 and 298 K under high-pressure condition, and the hydrostability was also tested by exposing the sample to 33% relative humidity at $23^{\circ}C$ and measuring XRD as a function of time.

  • PDF

Reaction Scheme on the Direct Synthesis of Methylchlorosilanes (Methylchlorosilanes의 직접 생산 반응에서 반응기구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.291-296
    • /
    • 2018
  • Direct synthesis of methylchlorosilanes was developed by Rochow with addition of copper on the silicon surface as a catalyst and many research were followed. Most of research were focused on the increase of reaction activity through addition of promoters and concentrated on the increase of selectivity of DMDC. However, there are very few studies about the reaction mechanism. Although formation of DMDC was explained in literature, formation of other silanes were not mentioned at all. This reseach focused on the explanation about formation of all silanes obtained during direct reaction and TPD. Reaction paths were proposed by means of dissociative adsorption of methyl chloride and spillover of surface Cl and H. Surface silicon sites were considered as $=SlCl_2$ and $=Sl(CH_3)Cl$. The synthesis of all methylchlorosilanes were explained by the adsorption of methyl group on the silicon sites and by the surface diffusion of nearby Cl and H. The proposed reaction mechanism explains the formation of all silanes during the reaction and also during the TPD process.

A Study on the Relationship between Motivation and Community Satisfaction of Audience for Non-profit Performing Arts (지역사회 비영리 공연 관람객의 관람동기와 지역사회만족도 간의 관계)

  • Jongeun Jwa;Seolwoo Park
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.47-69
    • /
    • 2023
  • The main purpose of this study is to examine the mediating effects of performance satisfaction and audience loyalty through the motivation and community satisfaction of non-profit performance attendees in the local community. Motivations were examined by distinguishing between intrinsic and extrinsic factors to understand the profound desires of the audience. A survey was conducted targeting attendees who had experienced non-profit performances in the Jeju area over the past year to gather data. Ultimately, the survey responses from 363 participants were used as the basis for analysis. The results of the analysis indicated that higher levels of intrinsic and extrinsic motivations generally led to greater satisfaction and loyalty towards performances (H1, H2, H3). However, extrinsic motivation did not directly influence loyalty (H4). Nevertheless, both types of motivations were found to positively influence loyalty through performance satisfaction (H5, H8). While satisfaction with performances did not have a direct impact on community satisfaction (H6), audience loyalty was found to have a positive influence on community satisfaction (H7). Regarding motivations, performance satisfaction did not mediate the relationship between motivations and community satisfaction (H9). In the case of audience loyalty, intrinsic motivation showed mediating effects, while extrinsic motivation did not (H10). The process of motivation-satisfaction-loyalty-community satisfaction demonstrated a sequential pathway (H11). In conclusion, if local residents show interest and participate in non-profit performances, they develop a positive perception of the respective community. Therefore, performances provided at the local level should be recognized as crucial elements for the development of the community.

Room Temperature Hydrogen Gas Sensor using Pd/Carbon Nanotubes Buckypaper (팔라듐/탄소나노튜브 버키페이퍼를 이용한 상온감지 수소가스 센서)

  • Han, Maeum;Kim, Jae Keon;Kim, Yeongsam;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.394-398
    • /
    • 2020
  • In this paper, we report the sensing performance of H2 gas sensors composed of Pd/carbon nanotube (CNT) buckypaper at room temperature. The CNT buckypaper was made using a simple filtration process and subsequently deposited with Pd as the sensing material. The sensitivity of the sensor increased with respect to the gas concentration. To investigate the effect of Pd thickness, Pd layers of different thickness were deposited on the buckypaper, and the response of the sensor was evaluated. The proposed sensor exhibits excellent sensing properties with optimized Pd thickness at room temperature (25℃). Pd nanoparticles significantly impact the sensitivity and selectivity of the sensor because of the spillover effect. In addition, the sensor is highly suitable for bendable and wearable devices owing to its structural flexibility.

Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells (수소-알코올연료전지를 위한 금속-산화물 나노구조제어)

  • Park, Kyung-Won;Song, You-Jung;han, Sang-Beom;Lee, Jong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF

Evaluation of Endothelium-dependent Myocardial Perfusion Reserve in Healthy Smokers; Cold Pressor Test using $H_2^{15}O\;PET$ (흡연자에서 관상동맥 내피세포 의존성 심근 혈류 예비능: $H_2^{15}O\;PET$ 찬물자극 검사에 의한 평가)

  • Hwang, Kyung-Hoon;Lee, Dong-Soo;Lee, Byeong-Il;Lee, Jae-Sung;Lee, Ho-Young;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • Purpose: Much evidence suggests long-term cigarette smoking alters coronary vascular endothelial response. On this study, we applied nonnegative matrix factorization (NMF), an unsupervised learning algorithm, to CO-less $H_2^{15}O-PET$ to investigate coronary endothelial dysfunction caused by smoking noninvasively. Materials and methods: This study enrolled eighteen young male volunteers consisting of 9 smokers $(23.8{\pm}1.1\;yr;\;6.5{\pm}2.5$ pack-years) and 9 nonsmokers $(23.8{\pm}2.9 yr)$. They do not have any cardiovascular risk factor or disease history. Myocardial $H_2^{15}O-PET$ was performed at rest, during cold ($5^{\circ}C$) pressor stimulation and during adenosine infusion. Left ventricular blood pool and myocardium were segmented on dynamic PET data by NMF method. Myocardial blood flow (MBF) was calculated from input and tissue functions by a single compartmental model with correction of partial volume and spillover effects. Results: There were no significant difference in resting MBF between the two groups (Smokers: 1.43 0.41 ml/g/min and non-smokers: $1.37{\pm}0.41$ ml/g/min p=NS). during cold pressor stimulation, MBF in smokers was significantly lower than 4hat in non-smokers ($1.25{\pm}0.34$ ml/g/min vs $1.59{\pm}0.29$ ml/gmin; p=0.019). The difference in the ratio of cold pressor MBF to resting MBF between the two groups was also significant (p=0.024; $90{\pm}24%$ in smokers and $122{\pm}28%$ in non-smokers.). During adenosine infusion, however, hyperemic MBF did not differ significantly between smokers and non-smokers ($5.81{\pm}1.99$ ml/g/min vs $5.11{\pm}1.31$ ml/g/min ; p=NS). Conclusion: in smokers, MBF during cold pressor stimulation was significantly lower compared wi4h nonsmokers, reflecting smoking-Induced endothelial dysfunction. However, there was no significant difference in MBF during adenosine-induced hyperemia between the two groups.