• Title/Summary/Keyword: H1R

Search Result 8,465, Processing Time 0.039 seconds

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) (미세균열의 간격 분포를 이용한 결의 평가 (III))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for three quarrying planes and three rock cleavages was performed using the parameters such as (1) reduction ratio between the value of spacing and the value of length, (2) microcrack spacing frequency(N), (3) total spacing($1mm{\geq}$), (4) exponential constant(a), (5) magnitude of exponent(${\lambda}$), (6) mean spacing($S_{mean}$), (7) difference value($S_{mean}-S_{median}$) between mean spacing and median spacing($S_{median}$) and (8) density of spacing. Especially the close dependence between the above spacing parameters and the parameters from the spacing-cumulative frequency diagrams was derived. The discrimination factors representing three quarrying planes and three rock cleavages were acquired through these mutual contrast. The analysis results of the research are summarized as follows. First, the reduction ratios of frequency(N), mean value, median value, the above difference value($S_{mean}-S_{median}$) and density for three rock cleavages are in orders of G(grain, (G1 + G2)/2) < H(hardway, (H1 + H2)/2) < R(rift, (R1 + R2)/2), H < G $\ll$ R, H < G $\ll$ R, H < G < R and H < G $\ll$ R. The values of the above five parameters for three planes show the various orders of R'(rift plane) $\ll$ H'(hardway plane) < G'(grain plane), R' $\ll$ G' < H', R' < H' < G', R' < G' < H' and R' $\ll$ H' < G', respectively. Second, the values of (I) parameters(2, 3, 4 and 5) and (II) parameters(6, 7 and 8) are in orders of (I) H < G < R and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Third, to review the overall characteristics of the arrangement among the six diagrams, these diagrams show an order of R2 < R1 < G2 < G1 < H2 < H1 from the related chart. In other words, above six diagrams can be summarized in order of rift(R1 + R2) < grain(G1 + G2) < hardway(H1 + H2). These results indicate a relative magnitude of rock cleavage related to microcrack spacing. Especially, two parameters for each diagram, the above difference value($S_{mean}-S_{median}$) and mean spacing, could provide advanced information for prediction the order of arrangement among the diagrams. Finally, the general chart for three planes and three rock cleavages were made. From the related chart, three exponential straight lines for three rock cleavages show an order of R(R1 + R2) < G(G1 + G2) < H(H1 + H2). On the contrary, three lines for three planes show an order of H'(R2 + G2) < G'(R1 + H2) < R'(G1 + H1). Consequently, correlation of the mutually reverse order between three planes and three rock cleavages can be drawn from the related chart.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II) (미세균열의 간격 분포를 이용한 결의 평가(II))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.151-163
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for the three directions of rock cleavages was performed using the parameters such as (1) frequency of microcrack spacing(N), (2) total spacing(${\leq}1mm$), (3) mean spacing($S_{mean}$), (4) difference value($S_{mean}-S_{median}$) between mean spacing($S_{mean}$) and median spacing($S_{median}$), (5) density of spacing(${\rho}$), (6) difference value between two exponents for the whole range of the diagrams(${\lambda}_H-{\lambda}_L$), (7) mean value of exponent(${\lambda}_M$), (8) mean value of exponential constant($a_M$), (9) difference value between two exponents for the section under the initial points of intersection(${\lambda}t_H-{\lambda}t_L$), (10) mean value of exponent(${\lambda}t_M$) and (11) mean value of exponential constant($at_M$). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of (I) parameters(1, 2, 7 and 8) and (II) parameters(3, 4 and 5) are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2) and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Besides, the values of parameter $6({\lambda}_H-{\lambda}_L)$, parameter $9({\lambda}t_H-{\lambda}t_L)$, parameter $10({\lambda}t_M)$ and parameter $11(at_M)$ for three planes are in orders of R(rift plane, (G1 + H2)/2) < H(hardway plane, (R2 + G2)/2) < G(grain plane, (R1 + H2)/2), H < G < R, H < R < G and R < H < G, respectively. The values of the above four parameters for three rock cleavages show the various orders of R < H < G, R < H < G, H < G < R and H < G < R, respectively. Meanwhile, the spacing values equivalent to the initial points of contact and intersection between the two directions of diagrams were derived. The above spacing values for three rock cleavages are in order of rift(R1 and R2) < grain(G1 and G2) < hardway(H1 and H2). The spacing values for three planes are in order of rift plane(G1 and H1) < hardway plane(R2 and G2) < grain plane(R1 and H2). In particular, the intersection angles for three rock cleavages and three planes are in order of rift and rift plane < hardway and hardway plane < grain and grain plane. Consequently, the two diagrams of rift(R1 and R2) and rift plane(G1 and H1) show higher frequency of the point of contact and intersection. These characteristics of change were derived through the general chart for three planes and three rock cleavages. Lastly, the correlation analysis through the values of parameters along with the distribution pattern is useful for discriminating three quarrying planes.

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

Syntheses and Structures of 1,2,3-Substituted Cyclopentadienyl Titanium(IV) Complexes

  • Joe, Dae-June;Lee, Bun-Yeoul;Shin, Dong-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Cyclopentadiene compounds, 2-[CR'R(OMe)]-1,3-Me$_2C_5H_3$ (R, R' = 2,2'-biphenyl, 2) and 2-[CR'R(OSiMe$_3$)]-1,3-Me$_2C_5H_3$ (R, R' = 2,2'-biphenyl, 3; R = ph, R' = ph, 4; R = 2-naphthyl, R' = H, 5) are readily synthesized from 2-bromo-3-methoxy-1,3-dimethylcyclopentene (1). Reaction of the cyclopentadienes with Ti(NMe$_2$)$_4$ in toluene results in clean formation of the cyclopentadienyl tris(dimethylamido)titanium complexes, which are transformed to the trichloride complexes, 2-[CR'R(OMe)]-1,3-Me$_2C_5H_2$}TiCl$_3$ (R, R' = 2,2'-biphenyl, 6) and {2-[CR'R(OSiMe$_3$)]-1,3-Me$_2C_5H_2$}TiCl$_3$ (R, R' = 2,2'-biphenyl, 7; R = ph, R' = ph, 8; R = 2-naphthyl, R' = H, 9). Attempts to form C1-bridged Cp/oxido complexes by elimination of MeCl or Me$_3$SiCl were not successful. X-ray structures of 6, 7 and an intermediate complex {2-[Ph$_2$C(OSiMe$_3$)]-1,3-Me$_2C_5H_2$}TiCl$_2$(NMe$_2$) (10) were determined.

Influence of Microcrack on Brazilian Tensile Strength of Jurassic Granite in Hapcheon (미세균열이 합천지역 쥬라기 화강암의 압열인장강도에 미치는 영향)

  • Park, Deok-Won;Kim, Kyeong-Su
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.41-56
    • /
    • 2021
  • The characteristics of the six rock cleavages(R1~H2) in Jurassic Hapcheon granite were analyzed using the distribution of ① microcrack lengths(N=230), ② microcrack spacings(N=150) and ③ Brazilian tensile strengths(N=30). The 18 cumulative graphs for these three factors measured in the directions parallel to the six rock cleavages were mutually contrasted. The main results of the analysis are summarized as follows. First, the frequency ratio(%) of Brazilian tensile strength values(kg/㎠) divided into nine class intervals increases in the order of 60~70(3.3) < 140~150(6.7) < 100~110·110~120(10.0) < 90~100(13.3) < 80~90(16.7) < 120~130·130~140(20.0). The distribution curve of strength according to the frequency of each class interval shows a bimodal distribution. Second, the graphs for the length, spacing and tensile strength were arranged in the order of H2 < H1 < G2 < G1 < R2 < R1. Exponent difference(λS-λL, Δλ) between the two graphs for the spacing and length increases in the order of H2(-1.59) < H1(-0.02) < G2(0.25) < G1(0.63) < R2(1.59) < R1(1.96)(2 < 1). From the related chart, the six graphs for the tensile strength move gradually to the left direction with the increase of the above exponent difference. The negative slope(a) of the graphs for the tensile strength, suggesting a degree of uniformity of the texture, increases in the order of H((H1+H2)/2, 0.116) < G((G1+G2)/2, 0.125) < R((R1+R2)/2, 0.191). Third, the order of arrangement between the two graphs for the two directions that make up each rock cleavage(R1·R2(R), G1·G2(G), H1·H2(H)) were compared. The order of arrangement of the two graphs for the length and spacing is reverse order with each other. The two graphs for the spacing and tensile strength is mutually consistent in the order of arrangement. The exponent differences(ΔλL and ΔλS) for the length and spacing increase in the order of rift(R, -0.08) < grain(G, 0.14) < hardway(H, 0.75) and hardway(H, 0.16) < grain(G, 0.23) < rift(R, 0.45), respectively. Fourth, the general chart for the six graphs showing the distribution characteristics of the microcrack lengths, microcrack spacings and Brazilian tensile strengths were made. According to the range of length, the six graphs show orders of G2 < H2 < H1 < R2 < G1 < R1(< 7 mm) and G2 < H1 < H2 < R2 < G1 < R1(≦2.38 mm). The six graphs for the spacing intersect each other by forming a bottleneck near the point corresponding to the cumulative frequency of 12 and the spacing of 0.53 mm. Fifth, the six values of each parameter representing the six rock cleavages were arranged in the order of increasing and decreasing. Among the 8 parameters related to the length, the total length(Lt) and the graph(≦2.38 mm) are mutually congruent in order of arrangement. Among the 7 parameters related to the spacing, the frequency of spacing(N), the mean spacing(Sm) and the graph (≦5 mm) are mutually consistent in order of arrangement. In terms of order of arrangement, the values of the above three parameters for the spacing are consistent with the maximum tensile strengths belonging to group E. As shown in Table 8, the order of arrangement of these parameter values is useful for prior recognition of the six rock cleavages and the three quarrying planes.

Effects of $SiH_4$gas flow rate on the properties of selective CVD-W by $SiH_4$ reduction ($SiH_4$환원에 의한 selective 텅스텐막 특성에 대한 $SiH_4$ 유속의 효과)

  • 임영진;이종무
    • Electrical & Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.123-131
    • /
    • 1991
  • SiH$_{4}$환원에 의한 selective CVD-W 공정에서 SiH$_{4}$ 유속의 W막 특성에 대한 효과를 조사하였다. 0.7$_{4}$/SW$_{2}$(=R)<0.9에서 .betha.-W이 나타나기 시작하여 SiH$_{4}$ 유속의 증가에 따라 .betha.-W의 함량은 게속 증가한다. W막의 표면 형태도 SiH$_{4}$유속의 증가에 따라 나뭇잎 모양(R<0.5), 흐릿하고 불안정한 모양(0.70.9에서는 주상의 결정립을 나타낸다. R.leq.0.7에서는 .alpha.-W만 존재하다가 0.7$_{4}$유속의 증가에 따라 증착속도와 W막의 정기저항이 증가한다. 특히, R.geq.0.9에서 전기저항이 급증한다. SiH$_{4}$유속의 증가에 따라 선택성이 악화되며 특히 1.1

  • PDF

Complete Assignment of $^1H$- and $^{13}C-NMR$ in (20R)-panaxadiol and (20R)-panaxatriol ((20R)-파낙사디올과 (20R)-파낙사트리올에 대한 $^1H$- 및 $^{13}C-NMR$의 완전동정)

  • Kim, Dong-Seon;Baek, Nam-In;Park, Jong-Dae;Lee, You-Hui;Kim, Shin-Il
    • YAKHAK HOEJI
    • /
    • v.40 no.3
    • /
    • pp.293-299
    • /
    • 1996
  • The $^1H$- and $^{13}C$-NMR signals of (20R)-panaxadiol and (20R)-panaxatriol were completely assigned by the extensive application of modern 2D-NMR techniques, $^1H-^1H$ COSY, HMQC and HMBC.

  • PDF

Human ChlR1 Stimulates Endonuclease Activity of hFen1 Independently of ATPase Activity

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Lee, Do Hee;Cho, Sayeon;Park, Sung Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3005-3008
    • /
    • 2014
  • Human ChlR1 protein (hChlR1), a member of the cohesion establishment factor family, plays an important role in the segregation of sister chromatids for maintenance of genome integrity. We previously reported that hChlR1 interacts with hFen1 and stimulates its nuclease activity on the flap-structured DNA substrate covered with RPA. To elucidate the relationship between hChlR1 and Okazaki fragment processing, the effect of hChlR1 on in vitro nuclease activities of hFen1 and hDna2 was examined. Independent of ATPase activity, hChlR1 stimulated endonuclease activity of hFen1 but not that of hDna2. Our findings suggest that the acceleration of Okazaki fragment processing near cohesions may aid in reducing the size of the replication machinery, thereby facilitating its entry through the cohesin ring.

New Transition Metal Mediated Alkylation Reaction of arachno-$S_{2}B_{7}H_{8}$, Insertion Reaction of arachno-$S_{2}B_{7}H_{8}^{-}$ with $(CO)_{5}M$ {${C(R_{1})(R_{2})}$} $(M=Cr,\;W;\;R_{1}=CH_{3},\;C_{6}H_{5};\;R_{2}=OCH_{3},\;SC_{6}H{5})$: Synthesis and Characterization of arachno-$4-RCH_{2}-6,8-S_{2}B_{7}H_{8}\;(R=CH_{3},\;IIa;\;C_{6}H_{5},\;IIb)$

  • Hee-Joo Jeon;Jae-Jung Ko;Kang-bong Lee;Sang Ook Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.113-117
    • /
    • 1993
  • Good yield synthetic routes for the production of new B-alkyl-dithiaborane clusters are reported. The syntheses of the B-alkyl-dithiaboranes are based on the use of Fischer-type carbene reagents to activate the B-H bonds of dithiaborane for alkyl-addition reactions and are the first examples of transition-mediated reactions of dithiaborane to be reported. Thus, reactions employing arachno-$S_2B_7H_8$- and $(CO)_5M{C(R_1)R_2}$ (M = Cr, W; $R_1 = CH_3,\;C_6H_5;\; R_2 = OCH_3,\;SC_6H_5)$ were found to yield the intermidiate anions I, $[(CO)_5M{C(R_1)R_2S_2B_7H_8}]^-$, which upon protonation gave the corresponding neutral, air-sensitive cluster arachno-4-$RCH_2-6,8-S_2B_7H_8(R=CH_3,\;IIa;\;C_6H_5,\;IIb)$ range from 30 to 35% yield. Complexes IIa and IIb are isoelectronic with arachno-6,8-$S_2B_7H_9$ and, on the basis of the spectroscopic data, are proposed to adopt a similar arachno cage geometry in which an $RCH_2$ units are substituted to 4 position boron atom of the arachno-6,8-$S_2B_7H_9$.

Complete Assignment of $^{1}H$ and $^{13}C$-NMR Signals for (20S) and (20R)-Protopanaxadiol by 2D-NMR Techniques (2D-NMR 기법을 이용한 (20S)와 (20R)-Protopanaxadiol의 $^{1}H$- 및 $^{13}C$-NMR 완전 동정)

  • 백남인;김동선
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 1995
  • (20S)- and (20R)-protopanaxadiol were prepared from crude ginseng saponin by chemical treatment. The $^{1}H$- and $^{13}C$-NMR signals of these compounds were fully assigned by various NMR techniques such as DEPT, 1H-1H COSY, HMQC, HMBC and NOESY.

  • PDF