• Title/Summary/Keyword: H1299

Search Result 85, Processing Time 0.018 seconds

Hypoxia Induced High Expression of Thioredoxin Interacting Protein (TXNIP) in Non-small Cell Lung Cancer and its Prognostic Effect

  • Li, Yan;Miao, Li-Yun;Xiao, Yong-Long;Huang, Mei;Yu, Min;Meng, Kui;Cai, Hou-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2953-2958
    • /
    • 2015
  • Although associations between thioredoxin interacting protein (TXNIP) and cancers have been recognized, the effects of TXNIP on non-small cell lung cancer (NSCLC) prognosis remained to be determined in detail. In addition, while hypoxia is a key characteristic of tumor cell growth microenvironment, the effect of hypoxia on TXNIP expression is controversial. In this study, formaldehyde fixed and paraffin embedded (FFPE) samples of 70 NSCLC patients who underwent resection between January 2010 and December 2011 were obtained. Evaluation of TXNIP and hypoxia inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) protein expression in FFPE samples was made by immunohistochemistry. By Kaplan-Meier method, patients with high TXNIP expression demonstrated a significantly shorter progression free survival (PFS) compared with those with low TXNIP expression (18.0 months, 95%CI: 11.7, 24.3 versus 23.0 months, 95%CI: 17.6, 28.4, P=0.02). High TXNIP expression level was also identified as an independent prognostic factor by Cox regression analysis (adjusted hazard ratio: 2.46; 95%CI: 1.08, 5.56; P=0.03). Furthermore, TXNIP expression was found to be significantly correlated with $HIF-1{\alpha}$ expression (Spearman correlation=0.67, P=0.000). To further confirm correlations, we established a tumor cell hypoxic culture model. Expression of TXNIP was up-regulated in all three NSCLC cell lines (A549, SPC-A1, and H1299) under hypoxic conditions. This study suggests that hypoxia induces increased TXNIP expression in NSCLC and high TXNIP expression could be a poor prognostic marker.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Down-Regulation of Survivin by Nemadipine-A Sensitizes Cancer Cells to TRAIL-Induced Apoptosis

  • Park, Seong Ho;Park, So Jung;Kim, Joo-Oh;Shin, Ji Hyun;Kim, Eun Sung;Jo, Yoon Kyung;Kim, Jae-Sung;Park, So Jung;Jin, Dong-Hoon;Hwang, Jung Jin;Lee, Seung Jin;Jeong, Seong-Yun;Lee, Chaeyoung;Kim, InKi;Cho, Dong-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines. TRAIL selectively induces apoptotic cell death in various tumors and cancer cells, but it has little or no toxicity in normal cells. Agonism of TRAIL receptors has been considered to be a valuable cancer-therapeutic strategy. However, more than 85% of primary tumors are resistant to TRAIL, emphasizing the importance of investigating how to overcome TRAIL resistance. In this report, we have found that nemadipine-A, a cell-permeable L-type calcium channel inhibitor, sensitizes TRAIL-resistant cancer cells to this ligand. Combination treatments using TRAIL with nemadipine-A synergistically induced both the caspase cascade and apoptotic cell death, which were blocked by a pan caspase inhibitor (zVAD) but not by autophagy or a necrosis inhibitor. We further found that nemadipine-A, either alone or in combination with TRAIL, notably reduced the expression of survivin, an inhibitor of the apoptosis protein (IAP) family of proteins. Depletion of survivin by small RNA interference (siRNA) resulted in increased cell death and caspase activation by TRAIL treatment. These results suggest that nemadipine-A potentiates TRAIL-induced apoptosis by down-regulation of survivin expression in TRAIL resistant cells. Thus, combination of TRAIL with nemadipine-A may serve a new therapeutic scheme for the treatment of TRAIL resistant cancer cells, suggesting that a detailed study of this combination would be useful.

Promoter Cloning of Human SETDB1 Gene Utilizing Bioinformatic Programs (생물정보 프로그램을 활용한 SETDB1 유전자 프로모터 클로닝)

  • Noh, Hee-Jung;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Eukaryotic gene expression is an important process, which is initiated by several transcription factors and RNA polymerases that occupy the promoter region of genomic DNA. Although there are many experiments to identify the promoter region in a gene, it is time and labor consuming to finalize it. In this study, we utilized bioinformatic programs, including Ensembl, NCBI, and CpG plots, to identify the cloning promoter region in SETDB1 genomic DNA. We performed PCR amplification to obtain the SETDB1 promoter on an approximately 2 kb region upstream from the TSS named SETDB1-P1. The PCR product was ligated with TA cloning vectors, and we confirmed the insert size using restriction enzyme digestion. Sequentially, the insert was subcloned into a pGL3-luc vector to produce pGL3-SETDB1- P1-luc and then confirmed by DNA sequencing. We also obtained a fragmented PCR product called P2 and P3 and performed a luciferase assay using pGL3-SETDB1-P1-luc transfection. We found that several anticancer drugs, including taxol, 4-FU, and doxorubicin, decreased the promoter activity of SETDB1. We obtained consistent data on the regulation of SETDB1 gene expression after anticancer drug treatment using Western blot analysis and RT-PCR. Our results suggest that promoter cloning of the human SETDB1 gene utilizing bioinformatics is a very useful and timesaving approach to study gene expression.

Anti-tumor Effects of Codonopsis Lanceolata Extracts on Human Lung and Ovarian Cancer (산지별 더덕 추출물의 폐암 및 난소암에 대한 항암 효능)

  • Cho, Young-Rak;Kim, Soo Hyeon;Yoon, Hyun Jae;Hong, Sam Yeol;Ko, Hee-Young;Park, Eun-Hee;Kim, Myoung-Dong;Seo, Dong-Wan
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Codonopsis lanceolata L. (Campanulaceae) has long been used in traditional Korean medicine to treat bronchitis, cough, and inflammatory diseases, however, the efficacy of anti-tumor activities remains to be defined. In this study the effects of Codonopsis lanceolata (C. lanceolata) on proliferation, migration and adhesion in lung (A549, H1299) and ovarian cancer (SKOV-3) cells were investigated. To assess and compare the pharmacological effects and production places of C. lanceolata, the ethanolic extracts of C. lanceolata from different places in Korea (Hongseong, Yecheon, Yeongwol, Yanggu, Gangjin, and Hoengseong) were prepared. The extract from Hoengseong county did have only marginal anti-proliferative activity in all the cell lines tested, however, other extracts had little or no effect on cell proliferation. The extracts from Hongseong, Gangjin or Hoengseong county had partial anti-migratory activity in lung cancer cells, but not in ovarian cancer cells. In addition, the extract from Hoengseong county had partial anti-adhesive activity in ovarian cancer cells, however, other extracts did not affect cell adhesion in both lung and ovarian cancer cells. Taken together, these findings provide the first description of anti-tumor efficacy of C. lanceolata from different production places in Korea, and suggest that C. lanceolata from Hoengseong county may have therapeutic potential in lung and ovarian cancers.