• Title/Summary/Keyword: H.263+

Search Result 600, Processing Time 0.033 seconds

Error Recovery by the Classification of Candidate Motion Vectors for H.263 Video Communications (후보벡터 분류에 의한 영상 에러 복원)

  • Son, Nam-Rye;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.163-168
    • /
    • 2003
  • In transmitting compressed video bit-stream over Internet, packet loss causes error propagation in both spatial and temporal domain, which in turn leads to severe degradation in image quality. In this paper, a new approach for the recovery of lost or erroneous Motion Vector(MV)s by classifying the movements of neighboring blocks by their homogeneity is proposed. MVs of neighboring blocks are classified according to the direction of MVs and a representative value for each class is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in many cases than existing methods.

Recovering Corrupted Motion Vectors using Discontinuity Features of an Image (영상의 불연속 특성을 이용한 손상된 움직임 벡터 복원 기법)

  • 손남례;이귀상
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 2004
  • In transmitting a compressed video bit-stream over Internet, a packet loss causes an error propagation in both spatial and temporal domain, which in turn leads to a severe degradation in image quality. In this paper, a new error concealment algorithm is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges t)r discontinuity across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the edges are detected and the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of calculating differences between all adjacent pixels on the boundary. Therefore, the proposed approach needs very few computations and the experiment shows an improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.

Kalman filter based Motion Vector Recovery for H.264 (H.264 비디오 표준에서의 칼만 필터 기반의 움직임벡터 복원)

  • Ko, Ki-Hong;Kim, Seong-Whan
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.801-808
    • /
    • 2007
  • Video coding standards such as MPEG-2, MPEG-4, H.263, and H.264 transmit a compressed video data using wired/wireless communication line with limited bandwidth. Because highly compressed bit-streams is likely to fragile to error from channel noise, video is damaged by error. There have been many research works on error concealment techniques, which recover transmission errors at decoder side [1, 2]. We designed an error concealment technique for lost motion vectors of H.264 video coding. In this paper, we propose a Kalman filter based motion vector recovery scheme, and experimented with standard video sequences. The experimental results show that our scheme restores original motion vector with more precision of 0.91 - 1.12 on average over conventional H.264 decoding with no error recovery.

Optimal Scheduling of SAD Algorithm on VLIW-Based High Performance DSP (VLIW 기반 고성능 DSP에서의 SAD 알고리즘 최적화 스케줄링)

  • Yu, Hui-Jae;Jung, Sou-Hwan;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.262-272
    • /
    • 2007
  • SAD (Sum of Absolute Difference) algorithm is the most frequently executing routine in motion estimation, which is the most demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an optimal implementation of SAD algorithm on VLIW processor should be accomplished. In this paper, we propose an implementation of optimal scheduling of SAD algorithm with conditional branch on a VLIW-based high performance DSP. We first transform the nested loop with conditional branch of SAD algorithm into a single loop with conditional branch which has a large enough loop body to utilize fully the ILP capability of VLIW DSP and has a conditional branch to make the escape from loop to be achieved as soon as possible. And then we apply a modulo scheduling technique to the transformed single loop. We test the proposed implementation on TMS320C6713, and analyze the code size and performance with respect to processing time. Through experiments, it is shown that the SAD implementation proposed in this paper has small code size appropriate for embedded applications, and the H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations.