• Title/Summary/Keyword: H. discus discus

Search Result 82, Processing Time 0.032 seconds

Inclusion effect of soybean meal, fermented soybean meal, and Saccharina japonica in extruded pellet for juvenile abalone (Haliotis discus, Reeve 1846)

  • Yun, Ahyeong;Kim, June;Jeong, Hae Seung;Lee, Ki Wook;Kim, Hee Sung;Kim, Pil Youn;Cho, Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.9
    • /
    • pp.26.1-26.8
    • /
    • 2018
  • Inclusion effect of soybean meal (SBM) and fermented SBM (FSM) in extruded pellet for juvenile abalone (Haliotis discus) was compared in abalone farm. Dietary inclusion effect of the combined macroalgae (MA) (Undaria pinnatifida and Hizikia fusiforme) and a single Saccharina japonica on abalone was also compared. Three thousand six hundred juvenile abalone were purchased from a private hatchery and acclimated to the experimental conditions for 2 weeks. Six 5-ton flow-through raceway tanks were used, and abalone were randomly distributed into tanks (n = 600 per tank). Three experimental diets were prepared in duplicate. Fish meal, FSM, corn gluten meal, and shrimp meal and wheat flour and dextrin were used as the protein and carbohydrate sources, respectively, in the FSM diet. MA was also included in the FSM diet. FSM and MA in the FSM diet were substituted with SBM at the expense of wheat flour and S. japonica, referred to as the SBM and SJ diets. The experimental diets were pelletized by an extruded pelleter. Water stability of nutrients in the experimental diets was monitored at 12, 24, and 48 h after seawater immersion. The experimental diets were fed to abalone once a day to satiation with a little leftover for 120 days. The retained crude protein and lipid and ash content of the extruded pellets were changed over all period of time. Weight gain and specific growth rate (SGR) of abalone fed the SBM diet were greater than those of abalone fed the FSM and SJ diets. Weight gain and SGR of abalone fed the SJ diet were also greater than those of abalone fed the FSM diet. The longest shell length, widest shell width, highest shell height, and greatest soft body weight were obtained in abalone fed the SBM diet, followed by the SJ and FSM diets. Proximates of the soft body of abalone were not different among the experimental diets. In conclusion, SBM was a superior protein source to FSM in extruded pellet for growth performance of abalone. Dietary inclusion of a single S. japonica was superior to the combined inclusion of U. pinnatifida and H. fusiforme in the production of abalone.

Bioactivity-Guided Fraction from Viscera of Abalone, Haliotis discus hannai Suppresses Cellular Basophils Activation and Anaphylaxis in Mice

  • Kap Seong Choi;Tai-Sun Shin;Ginnae Ahn;Shin Hye Kim;Jiyeon Chun;Mina Lee;Dae Heon Kim;Han-Gil Choi;Kyung-Dong Lee;Sun-Yup Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.379-386
    • /
    • 2024
  • Basophils and mast cells are specialized effector cells in allergic reactions. Haliotis discus hannai (abalone), is valuable seafood. Abalone male viscera, which has a brownish color and has not been previously reported to show anti-allergic activities, was extracted with acetone. Six different acetone/hexane fractions (0, 10, 20, 30, 40, and 100%) were obtained using a silica column via β-hexosaminidase release inhibitory activity-guided selection in phorbol myristate acetate and a calcium ionophore, A23187 (PMACI)-induced human basophils, KU812F cells. The 40% acetone/hexane fraction (A40) exhibited the strongest inhibition of PMACI-induced-β-hexosaminidase release. This fraction dose-dependently inhibited reactive oxygen species (ROS) production and calcium mobilization without cytotoxicity. Western blot analysis revealed that A40 down-regulated PMACI-induced MAPK (ERK 1/2, p-38, and JNK) phosphorylation, and the NF-κB translocation from the cytosol to membrane. Moreover, A40 inhibited PMACI-induced interleukin (IL)-1β, IL-6, and IL-8 production. Anti-allergic activities of A40 were confirmed based on inhibitory effects on IL-4 and tumor necrosis factor alpha (TNF-α) production in compound (com) 48/80-induced rat basophilic leukemia (RBL)-2H3 cells. A40 inhibited β-hexosaminidase release and cytokine production such as IL-4 and TNF-α produced by com 48/80-stimulated RBL-2H3 cells. Furthermore, it's fraction attenuated the IgE/DNP-induced passive cutaneous anaphylaxis (PCA) reaction in the ears of BALB/c mice. Our results suggest that abalone contains the active fraction, A40 is a potent therapeutic and functional material to treat allergic diseases.

Exfoliation of abalone, Haliotis discus hannai using organic acid (유기산을 이용한 전복박리)

  • Kim, Wi-Sik;Lee, Si-Woo;Kim, Jung;Choi, Dong-Ik;Oh, Myung-Joo;Hwang, Doo-Jin
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • It is reported that abalone, Haliotis discus hannai, was detached from shelters by commercial oxytetracycline (OTC) dissolved in hydrochloric acid (HCl). In the present study, we investigated the exfoliation effect of fouling abalone by organic acids instead of OTC or HCl. Organic acids (malic acid, citric acid, lactic acid and formic acid) of pH 2.6 and pH 2.1-2.3 exfoliated over 67.6% and 91.7% of abalone, respectively; while OTC of pH 2.6 and pH 2.1-2.3 exfoliated 25.9% and over 74.1% of abalone, respectively. These results indicate that the exfoliation effect of organic acid is better than that of OTC dissolved in HCl at the same pH. However, a lower pH and longer treatment of organic acids resulted in delayed recovery of the detached abalone; abalone immersed in pH 2.3 for 10 second was recovered within 5 min, but took 12 min to recover after 30 second immersion. Moreover, recovery period for abalone exposed to pH 2.1 for 30 second was at least 15 min 45 second. In conclusion, though acids need to be cautiously handled, organic acids may be a better candidate to detach abalone instead of OTC or HCl.

The 1996 Mass Mortality of Macrobenthic Animals in Cheju Island: A Possible Role of Physical Oceanographic Factor (1996년 제주도에 나타난 대형저서동물의 대량폐사: 물리해양학적 요인의 역할)

  • 서해립;조양기;서호영;김대환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.175-182
    • /
    • 1999
  • An unprecedented mass mortality of commercially important macrobenthic animals, including Haliotis discus discus, H. diversicolor, Batilus cornutus, Sticopus japonious and Hemicentrotus puzoherrimus, occurred off the west coast of Cheju Island in summer of 1996. Phytoplankton blooms were absent along the coast. The appearances of the surface low-salinity water (SLSW) off the coast of Cheju Island preceded the mass mortality, leading to speculation that the low-salinity stress may have a crucial role in the mass mortality. Since there was no heavy rain for the same period, the precipitation was not a possible explanation for the decrease of salinity. Physical oceanographic data taken by NFRDI (1997) clearly indicated that the SLSW was present in the area between China and Cheju Island in August 1996. This is most likely due to a freshwater supply resulting from the existence of large river runoff. Evidence of the current and the distance between the Yangtz River and Cheju Island also supports the hypothesis that source of the SLSW was the freshwater originated from the Yangtz River runoff.[macrobenthic animals, mass mortality, surface low-salinity water].

  • PDF

Component of oxytetracycline on exfoliation of abalone, Haliotis discus hannai (옥시테트라사이클린의 전복박리 성분)

  • Kim, Wi-Sik;Kim, Jung;Hwang, Doo-Jin;Han, Jong-Seok;Lee, Si-Woo;Choi, Dong-Ik;Lim, Sang-Min;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.25 no.2
    • /
    • pp.123-126
    • /
    • 2012
  • Exfoliation of fouling abalone, Haliotis discus hannai from shelters by commercial oxytetracycline (OTC) was observed in culture farms. In the present study, different components of OTC for exfoliation of abalone were investigated to understand how to work. Abalone were detached from shelter in 14,000 ppm of commercial OTC (main ingredients of OTC: OTC-hydrogen chloride (HCl), 50%; glucose, 49%; blue pigment, <1%), but not below 8,000 ppm. A 95% of exfoliation rate was observed in OTC-HCl (7,000 ppm, pH 2.8) but no exfoliation in OTC-HCl (7,000 ppm, pH 5.0), glucose (7,000 ppm) or blue pigment (140 ppm). Moreover 100% exfoliation rate was observed in HCl-seawater of pH 2.8. These results indicate that HCl is the component resulting in exfoliation of the fouling abalone. Abalone was detached in HCl solution (pH 2.5-3.2) within 2 min. However, a lower pH and longer treatment resulted in delayed recovery of the detached abalone. Thus, exfoliation of fouling abalone can be achieved by a low pH treatment with cautious handling.

RFLP Analysis of the mtDNA COI Region in Four Abalone Species

  • Park, Choul-Ji;Kijima, Akihiro
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.101-106
    • /
    • 2006
  • The cytochrome c oxidase subunit I (COI) gene region of mitochondrial DNA (mtDNA) was examined in four abalone species to estimate its utility as a genetic marker using restriction fragment length polymorphism (RFLP) analysis. The utility was evaluated in terms of genetic divergence and relationships among Haliotis discus hannai, H. rufescens, H. rubra, and H. midae in both hemispheres of the world. There was clear genetic divergence in the mtDNA COI region between all pairs of the four species. Moreover, relationships among the abalone species were reflected in their geographical distributions and morphological characteristics. Therefore, RFLP analysis of the mtDNA COI region is a suitable genetic marker for the estimation of genetic divergence and relationships among abalone species. However, it is not effective for the evaluation of genetic differences within abalone species.

Isolation of the Agarolytic Bacterium Vibrio cyclotrophicus DAG-130 from Abalone Gut

  • Meinita, Maria Dyah Nur;Luyen, Hai-Quoc;Hwang, Seon-Yeong;Kang, Ji-Young;Jin, Deuk-Hee;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.76-81
    • /
    • 2008
  • We isolated 1,916 strains of bacteria from gut and feces of abalone. The most active agarolytic bacterium, DAG-130, was identified from the gut of the abalone Haliotis gigantea. Of the bacteria harbored by both H. discus hannai and H. gigantea, 59% were agarolytic. There was no significant difference in the number of agarolytic bacteria isolated from abalone fed on the seaweeds Gelidium amansii, Laminaria japonica, or Undaria pinnatifida. Of the agarolytic bacteria, 72% were isolated from the guts of all sources tested while 43% came from the feces. The strain DAG-130 showed 100% identity with the bacterium Vibrio cyclotrophicus based on phylogenetic analysis of l6S rDNA. The bacterium produced monomers and oligomers from the agar substrate.

Preparation and characteristics of Haliotis Discus Hannai Ino (abalone) viscera Jeotgal, a Korean fermented seafood (전복내장 젓갈의 제조 및 품질특성)

  • Li, Jinglei;Kim, Bo-Sub;Kang, Seong-Gook
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • We prepared Jeotgal with Haliotis Discus Hannai Ino (abalone) viscera and the studied the physicochemical properties. Abalone viscus was fermented with varying amounts of salt for 60 days in order to prepare for the Jeotgal. During the fermentation, we measured the change of pH, volatile basic nitrogen (VBN), amino nitrogen (AN) and protease activity. After the fermentation, we examined the composition of free amino acids and sensory evaluation. The pH decreased with the fermentation, which was not significant (from 5.5 to 6.5). After the fermentation, the highest VBN was 96.7 mg/g, while the highest AN value was 406.3 mg/g. Unlike VBN and AN, the protease activity increased and reached the highest activity at the 30th day, and then decreased afterward. Based on the results, it was deduced that higher salinity restrained the fermentation and lowered the VBN, AN and protease activity. The total free amino acids of abalone Jeotgal, which were analyzed after the fermentation, (62.75 mg/g) was more than twice the amount in the abalone viscera before the fermentation (30.37 mg/g). We prepared abalone viscera Jeotgal and studied the characteristics for the first time. This will provide us with useful information for future related researches.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.