Browse > Article
http://dx.doi.org/10.5657/fas.2008.11.2.076

Isolation of the Agarolytic Bacterium Vibrio cyclotrophicus DAG-130 from Abalone Gut  

Meinita, Maria Dyah Nur (Department of Biotechnology, Pukyong National University)
Luyen, Hai-Quoc (Department of Biotechnology, Pukyong National University)
Hwang, Seon-Yeong (Department of Biotechnology, Pukyong National University)
Kang, Ji-Young (Department of Biotechnology, Pukyong National University)
Jin, Deuk-Hee (Faculty of Marine Bioscience and Technology, Kangnung National University)
Hong, Yong-Ki (Department of Biotechnology, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.11, no.2, 2008 , pp. 76-81 More about this Journal
Abstract
We isolated 1,916 strains of bacteria from gut and feces of abalone. The most active agarolytic bacterium, DAG-130, was identified from the gut of the abalone Haliotis gigantea. Of the bacteria harbored by both H. discus hannai and H. gigantea, 59% were agarolytic. There was no significant difference in the number of agarolytic bacteria isolated from abalone fed on the seaweeds Gelidium amansii, Laminaria japonica, or Undaria pinnatifida. Of the agarolytic bacteria, 72% were isolated from the guts of all sources tested while 43% came from the feces. The strain DAG-130 showed 100% identity with the bacterium Vibrio cyclotrophicus based on phylogenetic analysis of l6S rDNA. The bacterium produced monomers and oligomers from the agar substrate.
Keywords
Abalone; Agar; Agarolytic bacterium; Vibrio cyclotrophicus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, D.G., N.Y. Kim, M.K. Jang and S.H. Lee. 2007. Isolation and characterization of a marine bacterium Thalassomonas sp. SL-5 producing ${\beta}-agarase$. J. Life Sci., 17, 70-75   과학기술학회마을   DOI   ScienceOn
2 Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol., 4, 406-425
3 Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito and K. Horikoshi. 2005. Purification and characterization of a novel alpha-agarase from a Thallassomonas sp. Curr. Microbiol., 50, 212-216   DOI
4 Zhang, W.W. and L. Sum. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. J. Appl. Environ. Microbiol., 73, 2825-283.   DOI   ScienceOn
5 Vera, J., R. Alvarez, E. Murano, J.C. Slebe and O. Leon. 1998. Identification of a marine agarolytic Pseudo-alteromonas isolate and characterization of its extra-cellular agarase. J. Appl. Environ. Microbiol., 64, 4378-4383
6 Hedlund, B.P. and J.T. Staley. 2001.Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Syst. Evol. Micro-biol., 51, 61-66   DOI
7 Duckworth, M. and W. Yaphe. 1971. Structure of agar. I. Fractionation of a complex mixture of polysacchari-des. Carbohyd. Res., 16, 189-197   DOI   ScienceOn
8 Kimura, M. 1980. A simple method for estimating evolu-tionnary rates of base substitutions through com-parative studies of nucleotide sequences. J. Mol. Evol., 16, 111-120   DOI
9 Dawson, R.M.C., D.C. Elliott, W.H. Elliott and K.M. Jones. 1986. Data for Biochemical Research. 3rd ed., Oxford University Press, New York, USA, 1-580
10 Kato, I. 2000. Antioxidative and antitumorigenic properties of agaro-oligosaccharide. BioIndustry, 17, 13-19
11 Margarvey, N.A., M.K. Jessica, V. Brnan, M. Dworkin and D.H. Sherman. 2004. Isolation and characterization of novel marine derived actinimycete taxa rich in bio-active metabolites. J. Appl. Environ. Microbiol., 70, 7520-7529   DOI   ScienceOn
12 Shieh, W.Y., U. Simidu and Y. Maruyama. 1988. Nitro-gen-fixation by marine agar-degrading bacteria. J. Gen. Microbiol., 134, 1821-1825
13 Shieh, W.Y. and W.D. Jean. 1998. Alterococcus agaroly-ticus gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. Can. J. Micro-biol., 44, 637-645   DOI
14 Yoon, J.H., S.Y. Lee and Y.H. Park. 1996. Inter- and intra-specific phylogenetic analysis of the genus Nocar-dioides and related taxa based on 16S rDNA se-quences. Int. J. Syst. Bacteriol., 48, 187-194   DOI   ScienceOn
15 Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progress-sive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-4680   DOI
16 Jean, W.D., W.Y. Shieh and T.Y. Liu. 2006. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas. Int. J. Syst. Evol. Microbiol., 56, 1245-1250   DOI   ScienceOn
17 Agbo, J.A.C. and M.O. Moss. 1979. The isolation and characterization of agarolytic bacteria from a low-land river. J. Gen. Microbiol., 115, 355-368   DOI   ScienceOn
18 Kumar, S., K. Tamura and M. Nei. 2004. MEGA3: In-tegrated software for molecular evolutionary genetic analysis and sequence alignment. Brief. Bioinformat., 5, 150-163   DOI   ScienceOn
19 Li, X., X. Dong, C. Zhao and F. Chen. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. J. Microbiol. Biotechnol., 19, 375-379   DOI   ScienceOn
20 Erasmus, J.H., P.A. Cook and V.E. Coyne. 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. J. Aquacult., 155, 377-386   DOI   ScienceOn