• Title/Summary/Keyword: H-section

Search Result 1,525, Processing Time 0.026 seconds

Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400) (구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가)

  • Kwon, In-Kyu;Shin, Soon-Gi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.

A Study on Air Flow Analysis due to the Shape of Automotive Body (자동차 차체의 형상에 따른 공기 유동해석에 관한 연구)

  • Lee, Hyun-Chang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this study, the air resistance is studied by using flow analysis near automotive body due to the its shape. Flow velocities of airs entering into inlet plane are two kinds of 70 km/h and 100 km/h. Air resistance in case of high speed driving(100 km/h) becomes higher than regular speed driving(70 km/h) and the resistance in case of the car with wider cross section at front side becomes higher than narrower cross section. By using this analysis result, the shape of automotive body can be effectively designed in order to reduce the air resistance.

A Study on the Speech Recognition for DDD Area - Name Using Vector Quantization with Time Information (시간 정보와 VQ를 이용한 DDD 지역명 인식에 관한 연구)

  • LEE S. K.;LEE K. S.;ANN T. O.;CHO H. J.;BYON Y. C.;KIM S. H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.5
    • /
    • pp.102-112
    • /
    • 1989
  • In this paper, we proposed the study on speaker-independent isolated word recognition for DDD area-name using vector quantization and chose total 146 DDD area-name to recognize words for application of dialing system. We made the codebook using 12th LPC cepstrum coefficients and used the minsum and the minimax method to find the centroid and we applied 3 splitting rule to a codebook generation. The single section and the multi section with time information were used to generate the codebooks and the over-lapped section codebook was used, too. From the experiment result, we proved that the minsum method was better than the minimax method and the evaluation of the system yielded an accuracy of about 90 percents In case of speaker-independent.

  • PDF

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.