• Title/Summary/Keyword: H-polarized scattering

Search Result 21, Processing Time 0.026 seconds

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

A Study on H-polarized Electromagnetic Scattering by a Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자구조에 의한 H-polarized 전자파 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, thr H-polarized scattering problems by a resistive strip grating in a grounded double dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The %error of the convergence of the reflected power according to the relative permittivity of the dielectric layer and the size of the number of rows in the square matrix was compared, as the size of the number of rows in the square matrix increased, the accuracy of the reflected power increased. As the resistivity of the resistive strip decreased, the thickness of the dielectric layers decreased, and the relative permittivity of the dielectric layers increased, the reflected power increased. The numerical results for the presented structure of this paper having a grounded double dielectric layer are shown in good agreement compared to those of the existing papers.

Unification Model and Rayleigh Scattered Lyα in Active Galactic Nuclei

  • Chang, Seok-Jun;Lee, Hee-Won;Yang, Yujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.33.2-34
    • /
    • 2016
  • The unification model of active galactic nuclei invokes the presence of a thick molecular torus that hides the broad emission line region from a line of sight toward observers with low latitude. It is expected that the illuminated side of the molecular torus may be photodissociated by strong far UV radiation from the central AGN, forming an H I region with a high neutral column density. We propose that the Rayleigh scattering optical depth of this HI region can be significant for most broad $Ly{\alpha}$ line photons with the Doppler factor not exceeding 104 km s-1. Rayleigh scattered $Ly{\alpha}$ photons can be characterized by strong linear polarization depending on their scattering optical depth. We performed Monte Carlo simulations of polarized radiative transfer of $Ly{\alpha}$ adopting simple scattering geometries relevant to the unification model of AGN. We find that for a low torus the Rayleigh scattered $Ly{\alpha}$ is polarized in the direction parallel to the symmetry axis with the polarization degree dependent on wavelength. In the case of a high torus, the core part of $Ly{\alpha}$ is polarized in the direction perpendicular to the symmetry axis whereas the wing part is parallelly polarized. We conclude that careful spectropolarimetry around $Ly{\alpha}$ can be useful in testing the AGN unification model.

  • PDF

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra;J. Y. Oh;G. H. An;H. S. Lee;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

H-Polarized Scattering by a Resistive Strip Grating with Zero Resistivity at Strip-Edges Over a Grounded Dielectric Plane (접지된 유전체 평면위의 스트립 양끝에서 0 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.349-354
    • /
    • 2011
  • In this paper, H-polarized scattering problems by a resistive strip grating with zero resistivity at strip-edges over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a transverse electric (TE) plane wave are analyzed by applying the Fourier-Galerkin Moment Method (FGMM). The tapered resistivity of resistive strips has zero resistivity at strip edges, then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind as a orthogonal ploynomials. The sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies, the numerical results for the reflected power are compared with those of uniform resistivity in the existing papers.

H-Polarized Scattering by a Resistive Strip Grating with the Tapered Resistivity Over a Grounded Dielectric Plane : from Finite at One Strip-Edge to Zero at the Other Strip-Edge (접지된 유전체 평면위의 변하는 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란 : 한쪽 모서리에서 유한하고 다른쪽 모서리로 가면서 0인 경우)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.543-548
    • /
    • 2011
  • In this paper, H-polarized electromagnetic scattering problems by a resistive strip grating over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a TE (transverse electric) plane wave are analyzed by applying the FGMM (Fourier-Galerkin Moment Method). The tapered resistivity of resistive strips in this paper varies from finite resistivity at one edge to zero resistivity at the other edge, then the induced surface current density on the resistive strip is expanded in a series of Jacobi polynomials of the order ${\alpha}=1$, ${\beta}=0$ as a kind of orthogonal polynomials. The numerical results of the normalized reflected power show in good agreement with those of existing papers.

Analysis of E-polarized Electromagnetic Scattering by a Conductive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 완전도체띠 격자구조에 의한 E-분극 전자파 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 2020
  • In this paper, E-polarized electromagnetic scattering problems by a conductive strip grating between a double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the double dielectric layers, and incident angles. Generally, as the value of the dielectric constant of the double dielectric layer increases, the reflected power increases and the transmitted power decreases, respectively. As the dielectric constant of the double dielectric layer increases, the current density induced in the strip center increases. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

Radiative Transfer in Highly Thick Media through Rayleigh and Raman Scattering with Atomic Hydrogen

  • Chang, Seok-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2021
  • Hydrogen is the most abundant element in the universe, which is, in the cosmological context, attributed to its simplest structure consisting of a proton and an electron. Hydrogen interacts with an electromagnetic wave in astrophysical environments. Rayleigh scattering refers to elastic scattering, where the frequencies of the incident and scattered photons are the same. Rayleigh and resonance scattering is a critical role study Lyman Alpha objects in the early universe. The scattering causes the frequency and spatial diffusion of Lyα. In the case of Raman scattering, the energies of the incident and scattered photons are different. The photons near Lyβ convert to the optical photons near Hα through Raman scattering. The photon scattered by atomic hydrogen can carry both of the properties of the H I region and the emission region. I adopt a Monte Carlo approach to investigate the formation of the various spectral line features through Rayleigh and Raman scattering in highly thick media of atomic hydrogen. In this thesis, I present my works on radiative transfer involving the scattering processes between far UV photon and atomic hydrogen. I introduce scattering processes with atomic hydrogen and the spectral, spatial, and polarized information originating from the scattering.

  • PDF

POLARIZATION OF $H_{\alpha}$ WINGS RAMAN-SCATTERED IN SYMBIOTIC STARS (공생별에서의 $H_{\alpha}$날개의 편광연구)

  • BAK JIH-YONG;LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.147-151
    • /
    • 2000
  • Symbiotic stars, believed to be binary systems of a mass-losing giant and a white dwarf with an emission nebula, are known to exhibit very broad wings around Hex that extend to $\~10^3km\;s^{-1}$. The wing formation mechanism is not a settled matter and recently Lee (2000) proposed that Raman scattering of Ly$\beta$ by neutral hydrogen is responsible for the broad H$\alpha$ wings. In this model, it is predicted that. the Hex wings will be polarized depending on the geometric and kinematic distribution of the scatterers relative to the UV emission region. In this paper, we investigate the polarization of Hex wings in symbiotic stars. Noting that many symbiotic stars possess bipolar nebular morphology, we assume that the distribution of neutral scatterers follows the similar pattern with a receding velocity of several tens of km $s^{-1}$ that mimics the expansion of the neutral envelope of the nebula. It is found that the red wing is more strongly polarized than the blue and main part and that the polarization direction is along the equatorial plane. We obtain a typical degree of polarization $\~10$ percent, however, it varies depending on the detailed distribution of H I scatterers We conclude that spectropolarimetry will provide very important information on the origin of the Hex wings.

  • PDF