• Title/Summary/Keyword: H-decomposable graph

Search Result 1, Processing Time 0.014 seconds

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.