• Title/Summary/Keyword: H-bond interaction

Search Result 119, Processing Time 0.025 seconds

The Use of the Lippincott/Schroeder Potential Function in Establishing Relationships between Infred Spectroscopic Measurements and Structural and Thermodynamic Properties of Hydrogen Bonds (수소결합에 따른 적외선 분광기의 측정과 구조 및 열역학적 성질 사이의 관계식 성립에 관한 Lippincott/Schroeder 포텐샬 함수의 활용)

  • Park, Yung Hoon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.409-415
    • /
    • 1993
  • A potential function is applied to a hydrogen bonded system such as O-H---O and is slightly modified to provide a good understanding of a range of data. The use of this model requires a knowledge of terms describing the Van der Waals repulsion and the electrostatic interaction and the determination of these terms form the equilibrium conditions is described. Using this simple model, it will be shown that the relationship between the frequency shift and enthalpy of hydrogen bond formation is predicted to be linear and this is in reasonable agreement with experimental results in the literature.

  • PDF

Crystal and Molecular Structure of 4,6-Dimethyl-9-phenyl-8,12-dioxa-4,6-diazatetracyclo [8.8.0.02,7.013,18]octadeca-2(7),13,15,17-tetraene-3,5,11-trione 2-ethoxyphenyl (2E)-but-2-enoate

  • Ganapathy, Jagadeesan;Damodharan, Kannan;Manickam, Bakthadoss;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.197-204
    • /
    • 2013
  • The crystal structure of the potential active 4,6-dimethyl-9-phenyl-8,12-dioxa-4,6-diazatetracyclo [8.8.0.02,7.013,18] octadeca-2(7),13,15,17-tetraene-3,5,11-trione 2-ethoxyphenyl (2E)-but-2-enoate ($C_{22}H_{18}N_2O_5$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group $P_12_1/c_1$ with unit cell dimension a=15.2039(8), b=12.3888(6) and c= 9.8162(5) [alpha & $gamma=90^{\circ}$ beta=98.113(2)]. In the structure fused pyrone and pyran rings each adopt a sofa/envelop conformation. The crystal structure is stabilized by intramolecular C-H... O hydrogen bond interaction.

Kinetic Studies on the Nucleophilic Substitution Reaction of 4-X-Substituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures

  • Sung, Ryun-Youn;Choi, Ho-june;Lee, Jong-Pal;Park, Jong-Keun;Yang, Ki-Yull;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1579-1582
    • /
    • 2009
  • The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2,\;CN,\;CF_3$) with Y-substituted pyridines (Y = 3-$OCH_3,\;H,\;3-CH_3,\;4-CH_3$) in methanol-acetonitrile mixtures were measured by conductometry at 25 ${^{\circ}C}$. It was observed that the rate constant increased in the order of X = 4-$NO_2\;>\;4-CN\;>\;4-CF_3$ and the rate constant also increased in the order of Y = 4-$CH_3\;>\;3-CH_3\;>\;H\;>\;3-OCH_3$. When the solvent composition was varied, the rate constant increased in order of MeCN > 50% MeOH > MeOH. The electrophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic hydrogen and nitrogen of pyridines in ground state. Based on the transition parameters, ${\rho}_S,\;{\rho}_N,\;{\beta}_Y,\;{\rho}_{XY}$ and solvent effects, the reaction seems to proceed via $S_N$Ar-Ad.E mechanism. We also estimated the isokinetic solvent mixtures (${\rho}_{XY}$ = 0) based on cross-interaction constants, where the substituent effects of the substrate and nucleophile are compensated.

Studies on the Oxidative Addition Reactions of 1-Bromosilatranes to $SnBr_2$ (1-브로모실라트란의 $SnBr_2$ 에 대한 산화성 첨가반응 연구)

  • Kim, Myeong Un;Eo, Dong Seon;Sin, Ho Cheol;Kim, Jin Gwon;Do, Young Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.241-245
    • /
    • 1994
  • The oxidative addition reaction has been employed to synthesize heteropolynuclear compounds containing Si-M bonding interaction between the silicon atom of silatrane, pentacoordinate silicon derivative with transannular Si-N dative bond, and the main group element. The reaction of $SnBr_2 with 1-bromosilatrane(1a) in acetonitrile gives the mixture of yellow(2a) and white(2b) solids which were isolated and charaterized by ^1H-NMR, ^{29}Si-NMR, ^{119}Sn-NMR and Mass spectroscopy. The yellow compound was characterized as 1-tribromotinsilatrane which had Si-Sn bonding interaction. The reaction of SnBr2 with 1-bromo-3,7,10-trimethylsilatrane(1b) in methanol gives the Sn(Ⅳ) complex, N[CH_2CH(CH_3)O]_3SiSnBr_3(CH_3OH)_2(3),$ which was characterized by various means.

  • PDF

Syntheses, Structures and Luminescent Properties of Two Novel M(II)-Phen-SIP Supramolecular Compounds (M = Co, Ni)

  • Zhu, Yu-Lan;Shao, Shuai;Ma, Kui-Rong;Tang, Xue-Ling;Cao, Li;Zhao, Hui-Chao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1259-1263
    • /
    • 2012
  • Two metal compounds, $[Co(phen)_2(H_2O)_2]{\cdot}2H_2SIP{\cdot}2H_2O$ 1 and $[Ni(phen)_3]{\cdot}2H_2SIP{\cdot}3H_2O$ 2, have been obtained by incorporating 1,10-phenanthroline (phen) and 5-sulfoisophthalic acid monosodium salt ($NaH_2SIP$) ligands under hydrothermal conditions. Meanwhile, the two compounds were characterized by element analysis, IR, XRD, TG-DTA and single-crystal X-ray diffraction. Both 1 and 2 present 3D supramolecular structures via O-H${\cdots}$O hydrogen bond interactions. Luminescent properties for 1 and 2 were also studied. The compound 1 has two fluorescence emission peaks centered at 398 nm attributed to the intraligand emission from the SIP ligand and at 438 nm assigned to the combined interaction of intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand and ligand-to-metal-charge-transfer (LMCT) transitions (${\lambda}_{ex}$ = 233 nm). The compound 2 shows one emission band centered at 423 nm with a shoulder peak at 434 nm which may be originated from the intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand (${\lambda}_{ex}$ = 266 nm).

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

Semi-Empirical MO Calculations and Infrared Spectroscopy of Hydrogen-Bonding in Alkyl Alcohols (알킬알코올의 수소결합에 대한 적외선분광법 및 반경험적분자궤도함수의 계산)

  • Jong Taik Kim;Doo Seon Park
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 1987
  • Infrared absorption spectra of alkyl alcohols in the OH stretching region were obtained from varying the concentrations of alcohols in $CCl_4$. The OH stretching bands were broadened and shifted to lower frequencies due to the hydrogen-bond formation. Three bands were obtained from the breakdown of these bands by the simplex method. Each band was assigned to various types of hydrogen-bonded OH groups. The electronic structures and interaction energies of dimeric and trimeric alcohols were calculated by semi-empirical MO(CNDO/2, INDO) methods. These results were in good agreement with those of deconvoluted ir spectra. The EDA(electron donor-acceptor) effect of alkyl group on hydrogen-bond formation was in the decreasing order of butyl > propyl > ethyl > methyl group. On the other hand, the experimental results were in the order : propyl > ethyl > butyl > methyl group. This seemed to be ascribed to the bulkiness of butyl alcohol.

  • PDF

Effects on n-Alcohols on the Amino-Proton Chemical Shifts and on the Hindered Rotation about the N-C(O) Bond of Acetamide (아세트아미드의 아미노 양성자의 화학적 이동과 N-C(O) 결합주위의 부자유회전에 미치는 n-알코올 용매 효과)

  • Gwon, Sun Gi;Choe, Jong Ho;Choe, Yeong Sang;Yun, Chang Ju;Gwon, Dae Geun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.509-516
    • /
    • 1990
  • 1H-nmr chemical shifts and lineshapes of amino-protons of acetamide (AA) in n-alcohols were determined. The chemical shifts are discussed by the Reichardt's solvent polarity parameter, E$_{T}$(30). The following relationship between $\delta$obs and E$_{T}$(30) was obtained. ${\delta}_{obs}$ = ${\delta}_{o}$ + aE$_{T}$ (30) + b[E$_{T}$(30)]$^2$ where ${\delta}_{o}$ is the chemical shift of the solute in gaseous state or at $E_{T}$(30) = 0, a is a characteristic constant for the protons of AA in n-alcohol solutions and b is a constant for the solute (AA)-solvent (n-alcohols) interaction. The barrier of the hindered rotation about the N-C(O) bond in AA was obtained by analysis of the lineshapes of the amino-protons in AA. The behavior of the internal rotation as well as chemical shifts of the amino-protons in AA has been found to be closely related to the $E_{T}$(30) of n-alcohols.

  • PDF

Thermodynamic Properties of Lanthanides Complexes with Benzoylformate Anion (Lanthanides-Benzoylformate 착물 형성에 관한 열역학적 연구)

  • Young-Inn Kim;Sun-Geum Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.442-447
    • /
    • 1993
  • The thermodynamic parameters (${\Delta}$G, ${\Delta}$H and ${\Delta}$S) of lanthanides(III)-benzoylformate complexes in aqueous solution have been determined in the ionic medium of 0.1M $NaClO_4$ at 25$^{\circ}C$, using pH and enthalpy titration method. The stability constants of the lanthanide(III)-benzoylformate complexes (1 : 1) agree well with the general relationships for the bidentate ligands (e.g., log${\beta}_1$ vs. p$K_a$). Thermodynamic evidences show that the oxygen atom in ketone group is coordinated along with the carboxylate group. It is ascribed to the increasing charge density on the oxygen atom in ketone group due to the conjugation effect in the benzoylformate ligand. Thermodynamic results also indicate that the complexes are stabilized by the enthalpy effect caused by the ionic interaction of metal-oxygen bond as well as the entropy effect.

  • PDF

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid

  • Le, Thu-Huong;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1523-1528
    • /
    • 2014
  • Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.