• Title/Summary/Keyword: H-SFCL

Search Result 47, Processing Time 0.018 seconds

Analysis of Characteristics on the High-speed SFCL According to Single Line-ground-fault in the Reclosing Operation (재폐로 동작시 1선 지락사고에 따른 고속도 초전도 한류기의 특성 분석)

  • Jeong, In-Sung;Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.612-615
    • /
    • 2015
  • This paper proposed an high-speed superconducting fault current limiter (H-SFCL). The proposed H-SFCL functioned the initial fault current could be covered by the SFCL and the continued fault current after the one-cycle from fault occurrence could be controlled current-limiting-element of the normal conduction. To investigate the operation characteristics of the H-SFCL, a simulation power system was constructed, and a single line-to-ground fault was occurred. As a result, the H-SFCL limited the fault current by more than about 70%, and it was confirmed that the electric power burden was reduced compared to the SFCL that consisted only of superconductors.

Cooling performance test of the superconducting fault current limiter

  • Yeom, H.;Hong, Y.J.;In, S.;Ko, J.;Kim, H.B.;Park, S.J.;Kim, H.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.66-70
    • /
    • 2014
  • The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

Fabrication and Characteristic Test of Conduction-Cooled Brass Current Leads for a 22.9kV/630A Resistive Superconducting Fault Current Limiter System (22.9kV/630A 저항형 초전도 한류기용 전도-냉각 황동 전류인입선 제작 및 특성 실험)

  • Song, J.B.;Kim, J.H.;Kwon, N.Y.;Kim, Y.W.;Kim, H.M.;Sim, J.;Lee, B.W.;Kim, H.R.;Hyun, O.B.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.46-51
    • /
    • 2007
  • The 22.9kV/630A superconducting fault current limiter (SFCL) is developed by the KEPRI-LSIS collaboration group. This resistive SFCL uses three pairs of conduction-cooled current leads. When the SFCL system is in the fault mode. the current flows 20 times more than the steady state. Therefore. it is important that the current lead is designed to have the thermal stability in order to minimize the heat input of the cold-end. This paper presents the design and performance results of a pair of conduction-cooled brass current leads considering both cases that the SFCL system operates at the steady state and the fault current.

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

Determination of a Substation and Installation Site for applying Superconducting Cable/FCL to Real Power Grid (초전도케이블/한류기 실계통 적용 변전소 및 설치위치 선정 기술검토)

  • Yang, B.M.;Won, Y.J.;Kim, B.H.;Kang, J.W.;Yoon, J.Y.;Lee, S.R.;Moon, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • In attempts to closely study the effect of high efficiency, friendly environment HTS(High Temperature Superconducting) cable and SFCL(Superconducting Fault Current Limiters) on power system, several projects were carried out around the world. Promising results have been achieved in terms of cable capacity and reliability. commercial HTS cable and SFCL, however, must not only be only be feasible, but meet practical requirements as well. To facilitate the transition of HTS cable technology from the Lab. to the Real Grid, a New project for applying 22.9kV HTS cables and SFCL to the commercial Power Grid supported by Government has just started in KEPCO. Target of this project is to operate two 22.9kV, 50MVA, 150MVA HTS cables and two 22.9kV 630A, 3000A SFCL in a KEPCO Grid in order to demonstrate its reliability and stable operation. This paper will present the technology for selecting appropriate site and its plan for installation & operating of 22.9kV HTS cables & SFCL in KEPCO Grid.

Characteristics of a 190 kVA Superconducting Fault current Limiting Element (190 kVA급 초전도한류소자의 특성)

  • Ma, Y.H.;Li, Z.Y.;Park, K.B.;Oh, I.S.;Ryu, K.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

Quench Characteristics of a Inductive Superconducting Fault Current Limiter (유도형 초전도사고전류제한기의 퀜치특성)

  • Choi, K.D.;Lee, S.J.;Kim, D.S.;Lee, J.K.;Kim, D.H.;Cha, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.114-116
    • /
    • 1994
  • Recently a superconducting fault current limiter(SFCL) has public attentions for the solution of large fault currents of power systems. Though a SFCL has more effective characteristics than the other current limiting devices, there are many problems to apply it to real power systems. For the analysis of transient fault characteristics of the SFCL, we designed and fabricated a inductive SFCL and tested it in 35V line. The superconducting cable of the SFCL was quenched at lower current(49A) than the designed critical current but it limited the fault current to the lower value(150A) than the one expected without SFCL(250A). And within one period the fault current decreased lower than normal laod current.

  • PDF

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Fabrication and fault test of 12 kVA class BSCCO SFCL element (12 kVA급 BSCCO 한류소자 제작 및 특성 실험)

  • Oh, S.Y.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Jang, G.E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • For the development of superconducting fault current limiters(SFCLs) having large current capacity, we fabricated an SFCL element that consists of Bi-2212 superconductor and Cu-Ni alloy tubes. First, Ag was plated on the surface of the Bi-2212 for the enhancement of soldering process. On the Ag-plated Bi-2212 tube, a Cu-Ni alloy tube was soldered using optimized solders and soldering conditions. The BSCCO/Cu-Ni composite was processed mechanically to have a helical shape for the improvement of the SFCL characteristics. The total current path of the SFCL element was 1330 mm long with 12 turns, and had critical current of 340 A at 77 K. Finally, we carried out the fault test using the fabricated SFCL element. It showed successful current limiting performance under the fault condition of 50 $V_{rms}$ and 5.5 kA. From the results, the rated voltage of the SFCL element was decided to be 0.4 V/cm, and the power capacity was 12 kVA at 77 K. The fabrication process of the SFCL and the fault test results will be presented.

The Study on Insulation Coordination on 22.9kV SFCL for Applying to Real Grid (22.9kV 초전도 한류기 실계통 적용을 위한 절연협조 검토)

  • Kim, T.H.;Kang, J.W.;Kang, Y.W.;Park, J.W.;Lee, H.S;Yang, B.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • This paper proposes an insulation coordination and surge arrester design for superconducting power system with SFCL(Superconducting Fault Current Limiter) in Icheon substation. In the aspect of the economic analysis, since the superconducting devices are very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. In this paper, the insulation coordination for real grid including SFCL and the design of the protection devices against lightning surge is verified using PSCAD/EM TDC.