• 제목/요약/키워드: H-R diagram

검색결과 85건 처리시간 0.025초

지하수의 수질화학적 특징과 붕소, 브롬, 스트론튬 성인에 대한 고찰 (Origin of B, Br and Sr in Groundwater from Bukahn-myeon, Yeongcheon, Gyeongbuk Province, with Emphasis on Hydrochemistry)

  • 추창오;이진국;이창주;박기호;정교철
    • 지질공학
    • /
    • 제19권2호
    • /
    • pp.235-250
    • /
    • 2009
  • 경북 영천 북안면 일대 지하수의 수질화학적 특정과 붕소, 브롬, 스트론튬 성인에 대하여 연구하였다. pH는 7.37${\sim}$8.39 범위로서 중성 내지 약알칼리성이다. B는 0.41${\sim}$4.62mg/L범위로 평균 1.74mg/L 함유된다. Br은 0${\sim}$3.24mg/L 범위, 평균 2.22mg/L 함유되어 있다. Sr은 0.93${\sim}$8.64mg/L 범위, 평균 2.76mg/L 함유되어 있다. 지하수의 수질유형은 $Ca-HCO_3$가 가장 흔하다. EC에 가장 크게 기여하는 주요 성분들은 Na, $SO_4$, Cl 등인데, 이들의 결정계수는 각각 0.85, 0.70, 0.90이다. 염소이온에 대한 Na, K, $SO_4$는 결정계수가 각각 0.54, 0.68, 0.53으로서 서로 비례함을 나타낸다. 특히 B-Sr와 $Sr-SO_4$간의 결정계수는 각각 0.65, 0.64로 상관성이 높다. 지하수의 경우 Cl/Br 비는 5.21${\sim}$30.70 범위인데 이는 염소가 상당히 결핍되어 있음을 지시한다. $SO_4/Cl$의 비는 1.32${\sim}$27.24 평균 5.92범위인데, 이는 지하수에 다량의 $SO_4$ 이온이 유입되거나, 염소결핍 현상으로 해석된다. 화학종의 존재형태를 계산결과 B는 대부분 $H_3BO_3$형을 가지며, 일부는 $H_2BO_3$로서 존재한다. Br은 $Br^-$ 이온으로서만 존재한다. Sr은 대부분 $Sr^{2+}$로서 존재하며, 일부는 $SrSO_4$로 존재한다. 포화지수를 계산한 결과 중정석, 카올리나이트, 일라이트, K-운모, 스멕타이트와 같은 점토광물군은 과포화상태이며, 실리카 광물, 석고, 경석고, 활석, 녹니석, 크리소타일, 장석 등은 거의 포화상태에 근접한다. 셀레스타이트의 포화지수는 -2.23${\sim}$-0.13 범위로서 여전히 불포화상태이다. halite의 경우 상당한 불포화상태에 있다. B, Sr의 경우 본 역에 널리 분포하는 백악기말-신생대초의 유천층군 화산활동과 관련되었을 가능성이 가장 높다. 본 지역에서의 Br은 주로 지질과 관련되나 외부 오염물의 유입에 의한 특징도 있다고 볼 수 있다.

한국 연안산 단세포성 수소생산 남세균 종주들의 분류계통, 색소함량 및 최적성장 환경 (Phylogentic Position, Pigment Content and Optimal Growth Condition of the Unicellular Hydrogen-Producing Cyanobacterial Strains from Korean Coasts)

  • 박종우;김주희;조애라;정연덕;김평중;김형섭;이원호
    • 한국해양학회지:바다
    • /
    • 제20권3호
    • /
    • pp.131-140
    • /
    • 2015
  • 광생물학적 수소생산 잠재력을 가진 한국산 단세포성 남세균 단종배양체를 확립하기 위하여, 2005부터 4년 동안 우리나라 연근해역의 68개 정점에서 반복적으로 시료를 채집하였다. 확보된 77개 종주의 단종배양체 가운데 6개 종주(KNU CB-MAL002, 026, 031, 054, 055, 058)는 일반적인 수소생산 조건에서 0.15 mL $H_2\;mL^{-1}$ 이상의 수소 누적량을 나타내었고, 60시간 이상의 수소 지속생산을 기록하였다. 6개 실험 종주의 수소생산을 더욱 높여주는 최적의 공정을 규명하기 위한 연구의 일환으로, 각 종주의 수온 및 염분 등급 별 성장도를 측정하여, 종주 간의 차이(interstrain difference)를 비교 하였다. 실험 종주 6개의 일일 최대 성장률은 1.78~2.08 범위로 높았고, 모든 실험 종주가 질소고정능을 나타내어, 광생물학적 수소생산 잠재력이 높은 것으로 예상되었다. 16S rRNA 분석결과, 실험 종주 들은 Cyanothece sp. ATCC51142와 높은 유사도(99%)를 보였으나, 6개의 종주 모두가 분자계통도에서는 ATCC51142와 서로 다른 clade에 별도로 나뉘어져, 본 실험 종주의 일부는 신종일 가능성이 있다. 엽록소-a는 건중량 대비 함유량이 3.4~7.8%의 범위로 나타났으며, 보조색소인 홍조소와 남조소의 함유량은 대서양산 남세균 Synechococcus sp. Miami BG03511의 절반 수준이었다. 최적 성장온도로 확인된 $30{\sim}35^{\circ}C$ 구간 밖의 온도에서는 성장이 크게 제한되었으며, $40^{\circ}C$의 고온에서는 모든 실험종주의 성장이 거의 정지됨을 확인하였다. 실험 종주들은 30 psu의 염분에서 성장이 우세하였다. 이 가운데 CB055 종주는 15 psu까지의 상대적 저염 구간에서도 높은 성장을 유지하여, 염분의 변동에 대한 내성이 높은 종주로 확인되었다. 이와 같은 광염 특성의 종주는 연안수의 계절적인 염분변화가 상대적으로 큰 온대 연안역에서 이 종주를 생물공학적으로 응용하게 될 경우, 기반해수의 계절적인 염분 변화에도 불구하고 배양 공정상의 높은 유연성을 나타내게 될 것이다. 본 연구 결과 규명된 각 종주 별 생리적 특성 자료는 향후 광생물학적 수소생산 최적공정을 확립하기 위한 모델연구에 긴요할 것이다.

질량비가 작은 접촉쌍성 V410 Aur과 V776 Cas-II (LOW MASS RATIO CONTACT BINARY V410 Aur AND V776 Cas-II)

  • 오규동;김천휘;김호일
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권3호
    • /
    • pp.223-232
    • /
    • 2005
  • 질량비가 작은 접촉쌍성 V410 Aur과V776 Cas를 소백산천문대의 61cm망원경에 2K CCD 카메라를 부착하여 측광 관측을 하였으며, 그 결과 이 별들의 새로운 3색(BVR)의 완전한 광도곡선을 얻었다. 새로운 광도곡선과 이미 발표된 분광관측으로부터 WD모델을 이용하여 이 두 별의 궤도요소와 절대 물리량을 얻었다. V410 Aur과 V776 Cas를 포함한 절대물리량이 잘 알려진 19개의 질량비가 작은 접촉쌍성들의 진화 상태를 조사하였다. 그 결과 질량비가 작은 접촉쌍성의 주성은 대부분 TAMS상에 놓이며 반성은 ZAMS 아래 놓이고 있음을 재확인하였다.

UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구 (Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals)

  • 진종호;손희배;이영철
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1639-1645
    • /
    • 2015
  • UHD 고속영상 전송 시스템에서 EMI 특성은 특정 주파수 대역의 신호가 전기적, 구조적으로 주파수가 일치될 때, 에너지가 집중되고 신호의 흐름을 방해하여 왜곡이 발생하므로 시스템이 불안정해지는 원인이 된다. 이러한 신호의 왜곡을 제거하기 위하여 전원 무결성 분석과 EMI 현상에 대한 고주파 설계기법이 요구되어진다. 따라서 본 논문에서는 다층인쇄회로기판(MLB : Multi-Layer Printed Circuit Board) 구조에서 발생하는 고주파 잡음을 최소화하고 신호 무결성과 전원 무결성을 개선하면서 EMI를 억제하는 최적의 MLB 설계방법을 제안한다. 제안한 MLB의 특성 임피던스 파라미터는 비유전율 εr = 4.3, 고속영상 차동신호(HSVDS : High-Speed Vih = 0.145deo Differential Signaling)의 선로 폭 w = 0.203, 패턴의 간격 d = 0.203, 패턴의 두께 t = 0.0175, 베타층 위의 높이 를 고려하여 특성 임피던스 Zdiff = 100.186Ω으로 설계하였다. 실험결과 아이패턴의 출력 크기가 672mV, 지터는 6.593ps, 전송 주파수가 1.322GHz, 신호 대 잡음비는 29.62dB로 전송 품질이 개선 전보다 약 10dB 향상 되었다.

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF