• Title/Summary/Keyword: H-Pile

Search Result 232, Processing Time 0.024 seconds

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Lee, K.H.;Kim, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.782-787
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change or the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural Integrity of the material capsule called 04M-l7U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19 6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's In-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

  • PDF

Improvement of Verification Method for Remedial Works through the Suggestion of Indicative Parameters and Sampling Method (정화 보조지표와 시료 채취 방법 제안을 통한 토양정화검증 제도 개선 연구)

  • Kwon, Ji Cheol;Lee, Goontaek;Kim, Tae Seung;Yoon, Jeong-Ki;Kim, Ji-in;Kim, Yonghoon;Kim, Joonyoung;Choi, Jeongmin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.179-191
    • /
    • 2016
  • In addition to the measurement of the concentration of soil contaminants, the new idea of indicative parameters was proposed to validate the remedial works through the monitoring for the changes of soil characteristics after applying the clean up technologies. The parameters like CFU (colony forming unit), pH and soil texture were recommended as indicative parameters for land farming. In case of soil washing, water content and the particle size distribution of the sludge were recommended as indicative parameters. The sludge is produced through the particle separation process in soil washing and it is usually treated as a waste. The parameters like water content, organic matter content, CEC (cation exchange capacity) and CFU were recommended as indicative parameters for the low temperature thermal desorption method. Besides the indicative parameter, sampling methods in stock pile and the optimal minimum amount of composite soil sample were proposed. The rates of sampling error in regular grid, zigzag, four bearing, random grid methods were 17.3%, 17.6%, 17.2% and 16.5% respectively. The random grid method showed the minimum sampling error among the 4 kinds of sampling methods although the differences in sampling errors were very little. Therefore the random grid method was recommended as an appropriate sampling method in stock pile. It was not possible to propose a value of optimal minimum amount of composite soil sample based on the real analytical data due to the dynamic variation of $CV_{fund{\cdot}error}$. Instead of this, 355 g of soil was recommended for the optimal minimum amount of composite soil sample under the assumption of ISO 10381-8.

In-pile tritium release behavior and the post-irradiation experiments of Li4SiO4 fabricated by melting process

  • Linjie Zhao;Mao Yang;Chengjian Xiao;Yu Gong;Guangming Ran;Xiaojun Chen;Jiamao Li;Lei Yue;Chao Chen;Jingwei Hou;Heyi Wang;Xinggui Long;Shuming Peng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.106-113
    • /
    • 2024
  • Understanding the tritium release and retention behavior of candidate tritium breeder materials is crucial for breeder blanket design. Recently, a melt spraying process was developed to prepare Li4SiO4 pebbles, which were subsequently subjected to the in-pile tritium production and extraction platform in China Mianyang Research Reactor (CMRR) to investigate their in-situ tritium release behavior and irradiation performance. The results demonstrate that HT is the main tritium release form, and adding hydrogen to the purge gas reduces tritium retention while increasing the HT percent in the purge gas. Post-irradiation experiments reveal that the irradiated pebbles darken in color and their grains swell, but the mechanical properties remain largely unchanged. It is concluded that the tritium residence time of Li4SiO4 made by melt spraying method at 467 ℃ is approximately 23.34 h. High-density Li4SiO4 pebbles exhibit tritium release at relatively low temperatures (<600 ℃) that is mainly controlled by bulk diffusion. The diffusion coefficient at 525 ℃ and 550 ℃ is 1.19 × 10-11 cm2/s and 5.34 × 10-11 cm2/s, respectively, with corresponding tritium residence times of 21.3 hours and 4.7 hours.

Development of DHLT Joint for Vertical Cutoff Walls in Offshore Waste Landfill Site (해상처분장 연직차수공을 위한 DHLT 이음부의 개발)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Dongsoo;Chae, Kwang-Seok;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.43-56
    • /
    • 2018
  • Vertical cutoff walls such as steel pipe sheet piles (SPSPs) have been commonly applied for the construction of the offshore waste landfill site. Because the SPSPs are sequentially installed by connecting their joints to those of adjacent piles, their mechanical stability should be ensured against the inherent external forces on the sea. The objective of this study is to evaluate the structural performances of the newly developed types of SPSP joint compared with those of other joint types. The problems of the traditional SPSP joints are investigated, and an advanced joint shape of SPSP, which is named double H with L-T (DHLT) joint, are designed for improving the constructability and maintenance. Full-scale models of the DHLT joint are manufactured, and then its joint areas are filled with grout material. After 28 days of curing time, compressive and tensile strength tests were performed on the joint models and the test results were compared with those of the traditional joints. Experimental results show that the structural capacities of the DHLT joint models are lower than those of traditional joints due to the influence of grout and steel members. In the cases of the compressive strength test, especially, bending occurs on steel H-beam with no distinct cracks in grout due to the asymmetrical structure of joint which has no reaction force. This study shows that the performance of the SPSP joint can be improved by considering the influence factors on the structural capacities estimated by the experimental tests.

The Study on the Composting by Using Dam Suspended Particle Sawdust and Sewage Sludge (댐부유물 톱밥과 하수슬러지를 이용한 퇴비화 연구)

  • Ryu, Ji-Hune;Lee, Jong-Jin;Hong, Joo-Hwa;Chang, Ki-Woon;Lee, Gyu-Seung;Park, Gwan-Soo;Han, Ki-Pil
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • This study was carried out on the composting of the most part of the plant waste materials inflowed-drifting into the dam during the localized heavy rain and the rainy season, due to the abnormal climate change, and for the sewage sludge banned to dispose legally into the ocean from the year of 2012. It was analysed the distinctive physicochemical qualities of the compost with treatment S-1(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 20 : 40 : 10) and treatment S-2(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 30 : 30 : 10). Both S-1 and S-2 maintained for 10 days at above $65^{\circ}C$ of the compost pile temperature, and the most of its pathogen were destroyed. In case of pH, until the 90th day into composting, S-1 with the pH value of 7.78 was slightly higher than S-2. The C/N value of S-1 was 15.3 and that of S-2 was 16.9. The quality of its final product was satisfied to the manufacture-standards. The GI value of S-1 was 91 higher than that of S-2, which was 84. In conclusion, it is highly recommendable to manufacture S-1 for its frequent usage of dam suspended particle sawdust and sewage sludge, and for its excellent quality and safety.

Evaluation of Air Quality in the Compost Pilot Plant with Livestock Manure by Operation Types (축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가)

  • Kim, K.Y.;Choi, H.L.;Ko, H.J.;Kim, C.N.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.283-294
    • /
    • 2004
  • Air quality in the livestock waste compost pilot plant at the Colligate Livestock Station was assessed to quantity the emissions of aerial contaminants and evaluate the degree of correlation between them for different operation strategies; with the ventilation types and agitation of compost pile, in this study. The parameters analyzed to reflect the level of air quality in the livestock waste compost pilot plant were the gaseous contaminants; ammonia, hydrogen sulfide, and odor concentration, the particulate contaminants; inhalable dust and respirable dust, and the biological contaminants; total airborne bacteria and fungi. The mean concentrations of ammonia, hydrogen sulfide, and odor concentration in the compost pilot plant without agitation were 2.45ppm, 19.96ppb, and 15.8 when it was naturally ventilated, and 7.61ppm, 31.36ppb, and 30.2 when mechanically ventilated. Those with agitation were 5.50ppm, 14.69ppb, and 46.4 when naturally ventilated, and 30.12ppm, 39.91ppb, and 205.5 when mechanically ventilated. The mean concentrations of inhalable and respirable dust in the compost pilot plant without agitation were 368.6${\mu}g$/$m^3$ and 96.0${\mu}g$/$m^3$ with natural ventilation, and 283.9${\mu}g$/$m^3$ and 119.5${\mu}g$/$m^3$ with mechanical ventilation. They were also observed with agitation to 208.7${\mu}g$/$m^3$ and 139.8${\mu}g$/$m^3$ with natural ventilation, and 209.2${\mu}g$/$m^3$ and 131.7${\mu}g$/$m^3$ with mechanical ventilation. Averaged concentrations of total airborne bacteria and fungi in the compost pilot plant without agitation were observed to 28,673cfu/$m^3$ and 22,507cfu/$m^3$ with natural ventilation, and 7,462cfu/$m^3$ and 3,228cfu/$m^3$ with mechanical ventilation. They were also observed with agitation to 19,592cfu/$m^3$ and 26,376cfu/$m^3$ with the natural ventilation, and 18,645cfu/$m^3$ and 24,581cfu/$m^3$ with the mechanical ventilation. It showed that the emission rates of gaseous pollutants, such as ammonia, hydrogen sulfide, and odor concentration, in the compost pilot plant operated with the mechanical ventilation and with the agitation of compost pile were higher than those with the natural ventilation and without the agitation. While the concentrations of inhalable dust and total airborne bacteria in the compost pilot plant with the natural ventilation and with the agitation, the concentrations of respirable dust and total airborne fungi in the compost pilot plant with the mechanical ventilation and agitation were higher than those with the natural ventilation and without the agitation of compost pile. It was statistically proved that indoor temperature and relative humidity affected the release of particulates and biological pollutants, and ammonia and hydrogen sulfide were believed primary malodorous compounds emitted from the compost pilot plant.

Displacement Comparison of a Braced Retaining Wall by Elasto-Plastic Analysis Program (탄소성 해석프로그램에 의한 버팀지지 흙막이벽의 변위 비교)

  • 신방웅;김상수;오세욱;김동신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.395-402
    • /
    • 2000
  • Recently, the deep excavations have been peformed to utilize the under ground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground occurs frequently. The analysis of the retaining structures is necessary to the safety of the excavation works. There are many methods such as elasto-plastic, FEM, and FDM to analyze the displacement of the retaining structure. The elasto-plastic method is generally used in practice. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The program for Windows was used the Visual Basic 6.0, and the Main of the program consists of three subroutines, SUB1, SUB2, and SUB3. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement by the Inclinometer(at three excavation work sites). The excavation method of each site is braced retaining wall using H-pile. Each excavation depth is 14m, 14m, or 8.2m. The results of the analyses are the followings ① In the multi-layer soil, the lateral displacement by the GEBA-1 and EXCAD which is considering the distribution of the strut load is equal to the measured displacement. Elasto-plasto programs can't consider the change of the ground water in clay. Therefore, the analysis displacement was expected only 20% of the measured wall displacement. ③ At the final excavation step, the maximum lateral displacement of analysis and field occurred 7∼18m at the 85∼92% of the excavation depth. ④ The maximum lateral displacement in clay, as 50mm, occurred on the ground surface.

  • PDF

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.