• Title/Summary/Keyword: H-NMR

Search Result 2,736, Processing Time 0.03 seconds

Solid State NMR Studies of Proton Conducting Polymer, Poly(vinyl phosphonic) acid

  • Lee, Young-Joo;Bingol Bahar;Murakhtina Tatiana;Sebastiani Daniel;Ok, Jong-Hwa;Meyer Wolfgang H.;Wegner Gerhard;Spiess Hans Wolfgang
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.347-347
    • /
    • 2006
  • Polymers containing poly(vinyl phosphonic) acid segments are promising candidates to be used as proton conducting membranes. Solid state NMR spectroscopy represents an ideal probe of proton motion on the molecular level, because it allows us to selectively detect the nuclei of interest. In this paper, we apply solid state NMR methods to poly(vinyl phosphonic) acid in order to demonstrate that the proton conduction of poly(vinyl phosphonic acid) results from P-OH proton through hydrogen bonding and that the condensation of phosphonic acid leads to decrease in proton conductivity. $^{1}H\;and\;^{31}P$ solid state NMR experiments are supported by quantum chemical computation of NMR parameters.

  • PDF

Complete Assignments of the 1H and 13C NMR Data of Flavone Derivatives

  • Moon, Byoung-Ho;Lee, Young-Shim;Shin, Choon-Shik;Lim, Yoong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.603-608
    • /
    • 2005
  • The $^1H\;and\;^{13}C$ chemical shifts of flavone and its five derivatives were determined completely using the basic 1D and 2D NMR experiments and molecular modeling. Of the six compounds used for our experiments, the NMR data of three compounds were published previously, but we found that the data of two compounds included wrong assignments. Therefore, we report the corrected data and the complete assignments of NMR data of the other three compounds.

NMR Assignments of Rotameric Aporphine Alkaloids from Liriodendron tulipifera

  • Park, InWha;Na, MinKyun
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.171-175
    • /
    • 2020
  • Liriodendron tulipifera, belonging to the family Magnoliaceae, is commonly called tulip tree. Four N-acetylated aporphine alkaloids, N-acetylnornuciferine (1), N-acetylanonaine (2), N-acetyl-3-methoxynornuciferine (3), and N-acetyl-3-methoxynornantenine (4) were isolated from the roots of L. tulipifera. Although the purity of each compound (1 - 4) was determined to be 97, 96, 99, and 98%, respectively, the 1H and 13C NMR spectroscopic data of the aporphine alkaloids 1 - 4 displayed all signals in duplicate, indicating the presence of two rotamers due to restricted rotation of N-COCH3 functionality in solution status. The absolute configurations of 1 - 4 w ere established by measuring specific rotation and comparison with the reported data. This is the first report on the 1H and 13C NMR assignments of N-acetyl-3-methoxynornuciferine (3) and N-acetyl-3-methoxynornantenine (4). This study provides advanced NMR spectroscopic data for the structure determination of rotameric aporphine alkaloids.

Single-Crystal $^{27}Al$ NMR Study of Corundum α-$Al_2O_3$

  • 우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1205-1208
    • /
    • 1999
  • 27Al NMR chemical shielding, quadrupolar coupling, and dipolar coupling interactions for corundum (α-Al2O3) are determined from the single-crystal 27 Al NMR spectra according to the rotation about three orthogonal axis. 27 Al NMR parameters obtained in this work with high accuracy are as follows: δiso = 7.4(4) ppm, QCC = 2.30(4) MHz, h = 0.08(3), and R = 2.0(3) kHz. This work appears to be the first NMR measurement of an aluminum-aluminum dipolar coupling interaction in α-Al2O3 crystals.

Microstructure and Thermal Characteristics of Bio-based Terpolymer Made from Terephthalic Acid with Ethylene Glycol, 1,4-Cyclohexane Dimethanol, and Isosorbide (Ethylene Glycol, 1,4-Cyclohexane Dimethanol, Isosorbide와 Terephthalic Acid로 제조되는 바이오기반 삼원공중합체의 미세구조 및 열적 특성)

  • Lee, Sangmook;Kim, Sungki;Hong, In-Kwon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.287-292
    • /
    • 2015
  • Characterization of a series of bio-based terpolymers containing various amounts of ethylene glycol, 1,4-cyclohexylene dimethanol, and isosorbide units were studied by $^1H$ NMR and $^{13}C$ NMR. The NMR results revealed that they had all random microstructures and that their sequence distribution was affected by the content of isosorbide. From DSC data for the terpolymer series investigated, it was observed that the glass transition temperature increased mainly as the content of isosorbide increased. The glass transition temperatures of terpolymers were estimated from the composition by extended Fox equation.

The NMR assignments of anthraquinones from Cassia tora

  • Choi, Jae-Sue;Jung, Jee-Hyung;Lee, Hee-Jung;Kang, Sam-Sik
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.302-306
    • /
    • 1996
  • The $^1H- and^{13}C-NMR$ spectra of alaternin, aurantio-obtusin, chryso-obtusin, obtusin and 2-glucosyl obtusifolin isolated from the seeds of Cassia tora have been assigned based on HMBC, long-range HETCOR, fully $^1H-coupled {13}^C-NMR$, deuterium isotope experiment, and by comparison with the model compounds.

  • PDF

Contribution to the Phytochemical Study of Egyptian Tamaricaceous Plants

  • Barakat, Heba H.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 1998
  • A novel flavonol trisulphate, quercetin 7-methyl ether $3,3',4'-tri-O-KSO_3$ was isolated from the fresh leaves of Tamarix amplexicaulis (Tamaricaceae) along with the known flavonol mono sulphates, quercetin $3-O-KSO_3$ and quercetin 4'-methyl ether $3-O-KSO_3$. Structures were achieved through conventional analytical methods, including electrophoretic analysis and confirmed by FAB-MS and NMR spectroscopy.

  • PDF

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

Determination of Differences in the Nonvolatile Metabolites of Pine-Mushrooms (Tricholoma matsutake Sing.) According to Different Parts and Heating Times Using $^1H$ NMR and Principal Component Analysis

  • Cho, In-Hee;Kim, Young-Suk;Lee, Ki-Won;Choi, Hyung-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1682-1687
    • /
    • 2007
  • The differences in the nonvolatile metabolites of pine-mushrooms (Tricholoma matsutake Sing.) according to different parts and heating times were analyzed by applying principal component analysis (PCA) to $^1H$ nuclear magnetic resonance (NMR) spectroscopy data. The $^1H$ NMR spectra and PCA enabled the differences of nonvolatile metabolites among mushroom samples to be clearly observed. The two parts of mushrooms could be easily discriminated based on PC 1, and could be separated according to different heattreated times based on PC 3. The major peaks in the $^1H$ NMR spectra that contributed to differences among mushroom samples were assigned to trehalose, succinic acid, choline, leucine/isoleucine, and alanine. The content of trehalose was higher in the pileus than in the stipe of all mushroom samples, whereas succinic acid, choline, and leucine/isoleucine were the main components in the stipe. Heating resulted in significant losses of alanine and leucine/isoleucine, whereas succinic acid, choline, and trehalose were the most abundant components in mushrooms heat-treated for 3 min and 5 min, respectively.

Differentiation of Roots of Glycyrrhiza Species by 1H Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis

  • Yang, Seung-Ok;Hyun, Sun-Hee;Kim, So-Hyun;Kim, Hee-Su;Lee, Jae-Hwi;Whang, Wan-Kyun;Lee, Min-Won;Choi, Hyung-Kyoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.825-828
    • /
    • 2010
  • To classify Glycyrrhiza species, samples of different species were analyzed by $^1H$ NMR-based metabolomics technique. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data sets. There was a clear separation between various Glycyrrhiza species in the PLS-DA derived score plots. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of various Glycyrrhiza species were lactic acid, alanine, arginine, proline, malic acid, asparagine, choline, glycine, glucose, sucrose, 4-hydroxy-phenylacetic acid, and formic acid. The compounds present at relatively high levels were glucose, and 4-hydroxyphenylacetic acid in G. glabra; lactic acid, alanine, and proline in G. inflata; and arginine, malic acid, and sucrose in G. uralensis. This is the first study to perform the global metabolomic profiling and differentiation of Glycyrrhiza species using $^1H$ NMR and multivariate statistical analysis.