Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.2.287

Microstructure and Thermal Characteristics of Bio-based Terpolymer Made from Terephthalic Acid with Ethylene Glycol, 1,4-Cyclohexane Dimethanol, and Isosorbide  

Lee, Sangmook (Division of Chemical Engineering, Dankook University)
Kim, Sungki (SK Chemicals R&D Center)
Hong, In-Kwon (Division of Chemical Engineering, Dankook University)
Publication Information
Polymer(Korea) / v.39, no.2, 2015 , pp. 287-292 More about this Journal
Abstract
Characterization of a series of bio-based terpolymers containing various amounts of ethylene glycol, 1,4-cyclohexylene dimethanol, and isosorbide units were studied by $^1H$ NMR and $^{13}C$ NMR. The NMR results revealed that they had all random microstructures and that their sequence distribution was affected by the content of isosorbide. From DSC data for the terpolymer series investigated, it was observed that the glass transition temperature increased mainly as the content of isosorbide increased. The glass transition temperatures of terpolymers were estimated from the composition by extended Fox equation.
Keywords
NMR; terpolymer; isosorbide; sequence; randomness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Japu, A. M. de Ilarduya, A. Alla, and S. Munoz-Guerra, Polymer, 55, 2294 (2014).   DOI   ScienceOn
2 N. Guo, D. Hu, H. Wang, R. Wang, and Y. Xiong, Polym. Bull., 70, 3031 (2013).   DOI   ScienceOn
3 G. Moad, A. Groth, M. S. O'Shea, J. Rosalie, R. D. Trozer, and G. Peeters, Macromol. Symp., 202, 37 (2003).
4 T.-M. Wu, C.-C. Chang, and T. L. Yu, Polym. Phys., 19, 2515 (2000).
5 R. T. Neill and D. S. McWilliams, U.S. Patent 20140010982 A1 (2004).
6 S. R. Turner, R. W. Seymour, and J. R. Dombroski, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyester, J. Scheirs and T. E. Long, Editors, John Wiley & Sons, Ltd., Chapter 7 (2003).
7 D. R. Kelsey, B. M. Scardino, J. S. Grebowicz, and H. H. Chuah, Macromolecules, 33, 5810 (2000).   DOI   ScienceOn
8 C. J. Brandenburg and R. A. Hayes, U.S. Patent 2003020429 (2003).
9 R. Quintana, A. M. de Ilarduya, A. Alla, and S. Munoz-Guerra, J. Polym. Sci., Part A: Polym. Chem., 49, 2252 (2011).   DOI
10 H. Shirali, M. Rafizadeh, and F. A. Taromi, J. Compos. Mater., 48, 301 (2014).   DOI   ScienceOn
11 N. Gonzalez-Vidal, A. M. de Ilarduya, and S. Munoz-Guerra, J. Polym. Sci., Part A: Polym. Chem., 47, 5954 (2009).   DOI
12 W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013).   DOI   ScienceOn
13 W. J. Yoon, K. S. Oh, J. M. Koo, J. R. Kim, K. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 2930 (2013).   DOI   ScienceOn
14 W. S. Trahanovsky and Y. Wang, Fuel. Chem. Div. Prep., 47, 368 (2002).
15 Y. Zhu, M. Durand, V. Molinier, and J.-M. Aubry, Green Chem., 10, 532 (2008).   DOI   ScienceOn
16 R. Quintana, A. M. de Ilarduya, A. Alla, and S. M. Guerra, High Perform. Polym., 24, 24 (2012).   DOI
17 D. Braun and M. Bergmann, J. Fur Praktische Chemie-chemikerzeitung, 334, 298 (1992).   DOI
18 A. M. Aerdts, K. L. L. Ersels, and G. Groeninckx, Macromolecules, 29, 1041 (1996).   DOI   ScienceOn
19 J. Thiem and H. Lueders, Starch/Staerke, 36, 170 (1984).   DOI
20 J. Thiem and H. Lueders, Polym. Bull., 11, 365 (1984).
21 R. Storbeck, M. Rehahn, and M. Ballauff, Makromol. Chem., 194, 53 (1993).   DOI
22 H. R. Kricheldorf, G. Behnken, and M. Sell, J. Macromol. Sci., Part A: Pure Appl. Chem., 44, 679 (2007).   DOI