• Title/Summary/Keyword: H adsorption

Search Result 2,164, Processing Time 0.038 seconds

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Comparison of the As(III) Oxidation Efficiency of the Manganese-coated Sand Prepared With Different Methods (망간코팅사 종류별 독성 3가 비소의 산화특성에 관한 비교 연구)

  • Kim, Byeong-Kwon;Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • In this study physicochemical characteristics and stability of various manganese coated sands (MCS) prepared with different methods were evaluated. In addition, removal efficiencies of As(III) by each MCS were compared. Four different MCSs were used; B-MCS prepared by baking method, W&D-MCS prepared by wetting and dry method, NMCS prepared during the water treatment process and Birm which is a commercial MCS widely used for the removal iron and manganese. The manganese content in each MCS was following order: Birm (63,120 mg/kg) > N-MCS (10,400 mg/kg) >W&D-MCS (5,080 mg/kg) > B-MCS (2,220 mg/kg). Birm showed the least solubility (% basis) in acidic conditions. As(III) oxidation efficiency of B-MCS was continuously increased as the solution pH decreased. While As(III) oxidation efficiency of N-MCS and Birm was minimum around neutral pH. The increased As(III) oxidation efficiency above neutral pH for N-MCS and Birm could be due to the competitive adsorption of $Mn^{2+}$, which was produced from reduction of $MnO_2$, onto the surface of aluminum and manganese oxides.

Development of Adsorbent for Removing Toxic Organic Compounds(II) - Characterization of Adsolubilization of Organic Compounds by the Organo-anthracite - (유독성 유기화합물 제거를 위한 흡착제 개발(II) - Organo-anthracite에 의한 유기화합물의 흡착용해 특성 -)

  • Jang, Hyun-Suk;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.557-564
    • /
    • 2000
  • This study is aimed to develop the adsorbent which can effectively remove toxic hydrophobic organic compounds from the aqueous phase. The emphasis was made to elucidate the adsolubilization behavior of sparingly soluble organic compounds (SSOCs) into the cetyltrimetylammonium bromide(CTAB) layer formed on anthracite by the partition coefficient. The amount of SSOCs removed from aqueous solution was increased with increase of the amount of CTAB coated on the surface and wich increase of SSOCs's hydrophobicity. With the surface-modified solid shown in above. chloroform and benzene at the initial concentration of $6{\times}10^{-4}M$ were removed over 95%. Experimentally determined partition coefficient($K_d$) values between organo-anthracite and organics were 4~25 times higher than theoretical $K_d$ values of same organics Organo-anthracite formed by the addition of the CTAB can effectively immobilize organic contaminants dissolved in landfill leachate and can also be applicable to wastewater treatment containing toxic hydrophobic organic compounds such as chloroform and benzene.

  • PDF

Selective Catalytic Reduction of NO by H2 over Pt-MnOx/ZrO2-SiO2 Catalyst (Pt-MnOx/ZrO2-SiO2 촉매에서 수소에 의한 일산화질소의 선택적 촉매 환원반응)

  • Kim, Juyoung;Ha, Kwang;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • Selective catalytic reduction of nitrogen monoxide by hydrogen ($H_2$-SCR of NO) over platinum catalysts impregnated on zirconia-incorporated silica ($ZrO_2-SiO_2$) and manganese oxide ($MnO_x$) was investigated. $Pt-MnO_x$ catalyst showed low conversions and low yields of $N_2O$ and $NO_2$ at $100{\sim}350^{\circ}C$. On the other hand, NO conversions over $Pt/ZrO_2-SiO_2$ were very high, but $N_2O$ was predominantly produced at $100-150^{\circ}C$ and the yield of $NO_2$ increased with temperature at $200-300^{\circ}C$, resulting in poor $N_2$ yields. $Pt-MnO_x/ZrO_2-SiO_2$ exhibited a small enhancement in $N_2$ yield at $100-150^{\circ}C$ due to the synergy of $MnO_x$ and $ZrO_2-SiO_2$. The surface composition and oxidation state of the catalyst components and the acidity of the catalysts were examined. IR spectra of the adsorption of NO and their subsequent reactions with hydrogen on these catalysts were also recorded. The variations of conversion and product yield according to the catalyst components in the $H_2$-SCR of NO were discussed in relation to their catalytic roles.

Mitigations of Natural Organic Matter Fouling of Polyethersulfone Microfiltration Membrane Enhanced by Deposition of $TiO_2$ Nanoparticles ($TiO_2$ 나노입자로 표면침적된 Polyethersulfone 정밀여과 분리막의 자연유기물 파울링 감소)

  • Chang, Jung-Woo;Ahn, Kyung-Min;Kim, Ki-Hyun;Khan, Sovann;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • In this study, the effect of surface deposition of $TiO_2$ nanoparticles at polyethersulfone (PES) microfiltraiton (MF) membrane on humic acid fouling was investigated. The effect was observed as a function of crystal structures of $TiO_2$ nanoparticles and solution chemistries including pH and divalent cation such as calcium. Our results showed clearly that $TiO_2$-deposited membrane could mitigate membrane fouling significantly. However, this effect was observed to be dependent upon crystal structures of $TiO_2$ nanoparticles and solution chemistries. In the absence of calcium, fouling mitigation was less pronounced for both anatase and hybrid $TiO_2$-deposited membrane than for rutile $TiO_2$-deposited membrane while opposite trend was observed after addition of calcium. In the presence of calcium, the adsorption of humic acid to $TiO_2$-deposited membrane can be reduced by electrostatic repulsions between humic acid and $TiO_2$ surface. Addition of calcium provided further beneficial effect on fouling mitigation particularly at higher pH for the anatase $TiO_2$ deposited membrane, implying that both increased hydrophilicity due to $TiO_2$ nanoparticles and negative surface charge of the membrane should affect fouling mitigation. However, rutile $TiO_2$ having more inertness generally than the anatase $TiO_2$ showed relatively robust effect on the fouling mitigation regardless of solution properties.

Elution Patterns of Native Sulfate and Breakthough Curve′s of Anions from Bt Soils of Chungwon Series (청원통 Bt 토양에 내재된 황산이온의 용출특성과 음이온의 파쇄특성)

  • Chung Doug-Young;Jin Hyun-O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.190-197
    • /
    • 2000
  • Anions such as C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, P $O_4$$^{3-}$, and organic anions, that do not become a part of the clay mineral crystal lattice, are of considerable interest in soils which are a potential sink caused by acid rain. In this paper, elution of native sulfate and breakthrough curves (BTC) were obtained from miscible displacement of non-specifically or specifically adsorbed anions through non-saturated or saturated Bt soil of Chungwon series. The shape and position of the BTC's could be affected by adsoprtion and ion exchange onto the soil particle surfaces. Measured BTC's for oxalic acid under unsaturated and saturated conditions showed that less pore volumes were required to displace the native S $O_4$$^{2-}$S from the soil column, and that maximum detection limit of oxalic acid reached earlier than under unsaturated. The retarded BTC's to the righthand side could be attributed by different adsorption behavior of each anion, although BTC's may be influenced by the smaller order of velocity change. The alternate breakthrough and elution curves show the rapid approach to the maximum detection limit of C/Co = 1, compared to progressive tailing of elution curve to reach to C/Co = 0. The probable explanation for asymmetric elution patterns for both anion is that the anion was selectively adsorbed on the positively charged soil surface from the solution passing in the soil column. On the other hand, the variations of pH in effluent showed that pH was increased to 7 in the first 6 pore volume and then gradually decreased to pH 4.

  • PDF

The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L. (𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과 )

  • Jung-Ho Shin;Hyun-Sung Kim;Gwan-Ju Seong;Won Park;Sung-Ju Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • Biopolymer is a versatile material used in food processing, medicine, construction, and soil reinforcement. 𝛽-glucan is one of the biopolymers that improves the soil water content and ion adsorption in a drought or toxic metal contaminated land for plant survival. We analyzed drought stress damage reduction in sweet potatoes (Ipomoea batatas L. cv. Sodammi) by measuring the growth and major protein expression and activity under 𝛽-glucan soil amendment. The result showed that sweet potato leaf length and width were not affected by drought stress for 14 days, but sweet potatoes grown in 𝛽-glucan-amended soil showed an effect in preventing wilting caused by drought in phenotypic changes. Under drought stress, sweet potato leaves did not show any changes in electrolyte leakage, but the relative water content was higher in sweet potatoes grown in 𝛽-glucan-amended soil than in normal soil. 𝛽-glucan soil amendment increased the expression of plasma membrane (PM) H+-ATPase, but it decreased the aquaporin PIP2 (plasma membrane intrinsic protein 2) in sweet potatoes under drought stress. Moreover, water maintenance affected the PM H+-ATPase activity, which contributed to tolerance under drought stress. These results indicate that 𝛽-glucan soil amendment improves the soil water content during drought and affects the water supply in sweet potatoes. Consequently, 𝛽-glucan is a potential material for maintaining soil water contents, and analysis of the major PM proteins is one of the indicators for evaluating the biopolymer effect on plant survival under drought stress.

Characterization of Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water (가시박 유래 바이오차의 특성 및 항생물질 흡착제로서의 활용가능성 평가)

  • Lim, Jung Eun;Kim, Hae Won;Jeong, Se Hee;Lee, Sang Soo;Yang, Jae E;Kim, Kye Hoon;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Biochar (BC) from biomass pyrolysis is a carbonaceous material that has been used to remove various contaminants in the environment. The eliminatory action for burcucumber (Sicyos angulatus L.) as an invasive plant is being consistently carried out because of its harmfulness and ecosystem disturbance. In this study, burcucumber biomass was converted into BCs at different pyrolysis temperatures of 300 and $700^{\circ}C$ under a limited oxygen condition. Produced BCs were characterized and investigated to ensure its efficiency on antibiotics' removal in water. The adsorption experiment was performed using two different types of antibiotics, tetracycline (TC) and sulfamethazine (SMZ). For the BC pyrolyzed at a high temperature ($700^{\circ}C$), the values of pH, electrical conductivity, and the contents of ash and carbon increased whereas the yield, mobile matter, molar ratios of H/C and O/C, and functional groups decreased. Results showed that the efficiency of BCs on antibiotics' removal increased as pyrolysis temperature increased from 300 to $700^{\circ}C$ (38 to 99% for TC and 6 to 35% for SMZ). The reaction of ${\pi}-{\pi}$ EDA (electron-donor-acceptor) might be involved in antibiotics' adsorption to BCs. BC has potential to be a superior antibiotics' adsorbent with environmental benefit by recycling of waste/invasive biomass.

Studies on the Bacteriophages of Brevibacterium lactofermentum (L-글루타민산 생산균 Brevibacterium lactofermentum의 Bacteriophag에 관한 연구)

  • 이태우
    • Korean Journal of Microbiology
    • /
    • v.17 no.3
    • /
    • pp.97-130
    • /
    • 1979
  • Many industrial processes those employ bacteria are subjected to phage infestations. In L-glutamic acid fermentions using acetic acid, the phage infestations of the organisms have been recently recognized. In efforts to elucidate the sources of phage contamination involved in the abnormal fermentation, a series of study was conducted to isolate the phages both from the contents of abnormally fermented tanks and the soil or sewage samples from the surroundings of a fermentation factory, to define major charateristics of the phage isolates, and finally to determine the correlation between the phage isolates and temperate phages originating from the miscellaneous bacterial species isolated from the soil or sewage samples. The results are summarized as follows; 1) All phages were isolated from the irregular fermentation tanks and soil or sewage samples, and they were designated as phage PR-1, PR-2, PR-3, PR-4, PR-5, PR-6, and PR-7, in the order of isolation. These PR-series phages were proved to be highly specific for the variant strains of Br. lactofermentum only, namely, phage PR-1 and PR-2 for Br. lactofermentum No. 468-5 and phage PR-3~PR-7 for Br. lactofemrentum No. 2256. By cross-neutralization test, the 7 phagescould be subdivided into 3 groups, i. e., phage PR-I and PR-2 the first, phage PR-3, PR-4, PR-5, PR-6 the second, and the phage PR-7 the third. 2) The 7 phages were virulent under the experimental conditions. They produced plaques with clear and relatively sharp margins without distinct halo. The mean sizes of plaques were 1.5mm in diameter for phage PR-1 and PR-2, and 1. Omm for phages PR-3~PR-7. Double layer technique modified by Hongo and described by Adams, was applied to assay of the PR-series phages. The factors influencing the plaques were as follows;young age cells of host bacteria cultured for 3-6 hours represented the largest number and size, optimum was pH 7.0, incubation temperature was $30^{\circ}C$, and agar concentration and amount of overlayer medium were 0.6% and 0.2ml, respectively. 3) PR-series phages were stable in 0.05M tris buffer and 0.1M ammonium acetate buffer solution. The addition of $5{\times}10^{-3}M$ magnesium ion effectively increased the stability. Thermostability experiments indicated that PR-series phages were stable at the teinperture between $50^{\circ}{\sim}55^{\circ}C$ in nutrient medium, $45^{\circ}{\sim}50^{\circ}C$ in buffer solution. However, the phages mere completely inactivated at 603C and 65$^{\circ}$C within 10 minutes. The phages were stable at the range of pH6~9 in nutrient medium and of pH 8-9 in buffer solution, respectively. Exposure of the phages to UV for 25, 60 and 100 seconds resulted in the complete loss of infectivily, respectively. 4) Electron microscopy showed that PR-series phage particles exhibited rather similar morphology, differing in the size All of PR-series phages had a multilateral head and had a simple long tiil about three to five times long as compared with head. By the size, phage PR-1 and PR-2, PR-3, PR-4, PR-5, and PR-6 and PR-7 were classified into same groups, respectively. The head and tail size of phage PR-1, PR-5, PR-5(T) and PR-7 were 85nm, 74nm and 235nm and 350mm, and 72nm and 210nm, respectively. 5) Nucleic acids of PR-series phages were double stranded DNA. The G+C contents of phage PR-1, PR-5 and PR-7 were 56.1, 52.9 and 53.7, respectively. The values of G+C contents derived from the $T_m$ were in agreement with the chemically determined values. 6) PR-series phages effectively adsorbed on their host bacteria at the rate of more than 90% during 5 min. K value for phage PR-1, PR-5 and PR-7 were calculated to be $6{\times}10^9 ml$ per minute, respectiveky. The pH of the medium did effect adsorption rate, but both temperature and age of host cells did not. Generally, optimum adsorption condition of phages seemed to be almost same as optimum growth conditions of host bacteria. 7) In one-step growth experiments, the latent periods at $30^{\circ}C$ for PR-1, and PR-7 were about 70, 50 and 55 min, respectively. The corresponding average burst size was 200, 70 and 90, respectively. Lpsis period according to the multiplicity of infection and a phage series. In case of m. o. i. 100, strain No. 2256 (PR-5) and No. 468-5(PR-1) failed to grow and turbidity decreased after 50 and 70min, respectively. 8) In the lysate of a plaque purified phage PR-5 infected bacteria, there observed 2 types ofphage particles, i. e., phage PR-5 and PR-5 (T) of similar morphology but differing at the length of phage tail, and phage tail like particles. The phage taillike particles could be divided into 4 types by the length. Induction experiments of Br. lactofermentum with UV irradiation, mitomycin C or bacitracin treatment produced neither phage PR-5 (T) or phage tail-like particles. 9) No lysis occured when the growth of 7 strains of miscellaneous bacteria, isolated from soil and sewage samples, were inoculated with either phage PR-5 (T) or phage tail-like particles the inoculation of phage PR-5 pellet resulted in the growth inhibition of the orgainsms in the spot test. The lysates obtained from 3 miscellaneous soil derived bacteria following mitomycin C treatment the growth of Br. lactofermentum, but did not lyze the bacterium.

  • PDF

Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas (폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성)

  • Kang Min-Mu;Lee Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.499-512
    • /
    • 2005
  • EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.