• Title/Summary/Keyword: H adsorption

Search Result 2,164, Processing Time 0.032 seconds

Purification and Characterizationn of Biosurfactant from Marine Pseudomonas sp. CHCS-2 (해양으로부터 분리한 Pseudomonas sp. CHCS-2가 생산하는 Biosurfactant의 정제 및 특성에 관한 연구)

  • 류병호;김학주
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.582-588
    • /
    • 1995
  • A marine microorganism producing biosurfactant was isolated from the oil polluted coast of Chung-Mu in Korea, and was identified as Pseudomonas sp.. It produced the biosurfactanl and its optimum culture conditions for pH and salt concentration were 8.0 and 3.0%, respectively. The productivity of biosurfactant from this strain was affected by the nitrogen source used. For the oil resolvability of the biosurfactant, the residual oil in the culture broth with 2% Kuwait crude oil at each time of 48, 96, and 132hr was investigated by gas chromatography. As result of this experiment, it was verified that the biosurfactant acted on C10-C14, of Kuwait crude oil and so the oil was decomposed. The biosurfactant isolated from the supernatant was purified by adsorption to Amberliter XAD-7 and followed by gel chromatography (Sephadex G-100) and HPLC. The purified biosurfactant showed a high value of emulsifying activity at $40^{\circ}C$ and the emulsifying stability was maintained at the temperature range of $30^{\circ}C$$60^{\circ}C$. The purified biosurfactant reduced the interfacial tension of Kuwait crude oil remarkably and showed improved dispersing ability compared to those of commercial surfactants such as Tween 80, Tween 60 and SDS.

  • PDF

Soil Components and Elution Characteristics of Heavy Metals in Sediments of Andong and Imha Reservoir (안동・임하호 저니토의 토양 성분과 중금속 용출 특성)

  • Seo, Eulwon;Kim, Younjung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • In this study, it was analyzed the soil components and elution characteristics of heavy metal ions in sediment samples to examine the effect of sediments embedded in Andong and Imha reservoirs on water quality. Major elements of sediments were shown to be Al, Si, K, and Fe by EDS analysis and major soil components of the collected 6 different sediments were illite (I), kaolinite (Ka), quartz (Q) and feldspar (F). And especially quartz took up a considerable part of sediments by XRD analysis. The total concentrations of Zn, As, Cr, Cu and Pb in sediments of Andong reservoir were relatively higher than those of Imha reservoir. The elution property of heavy metal from sediments had various aspects according to pH. Among the heavy metals in Andong reservoir sediments, As and Zn were significantly eluted at pH 6 compared with the other heavy metals. In the case of the adsorption tests using the sediments, the adsorptive capacities of Zn, Cd and Cu were very weak, on the while those of Pb and Cr were high.

  • PDF

Penicillin Fermentation using a Carrier-supported Mycelial Growth (담체에 고정화된 균사체 증식을 이용한 페니실린의 발효)

  • Park, Sang K.;Kim, Jung H.;Park, Young H.
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 1985
  • A carrier-supported mycelial growth of Penicillium chrysogenum was applied to penicillin fermentation system. Among various materials tested, celite was found to be most effective for both spore adsorption and bioparticle development. Hyphal growth through pore matrices of the material showed strong anchorages and provided highly stable biofilm growths. When 5-10% celite was employed, both cell growth and penicillin production were observed to increase significantly comparing to the dispersed filamentous growth. Specific productivity of penicillin, however. was found to be kept almost constant at a value of 1,900 unit/g cell/hr. A semicontinuous fermentation in a fluidized-bed reactor. using the tarrier-supported biofilm growth, was conducted successfully although free mycelia appeared in the late phase of the fermentation made the reactor operation difficult. Control of the size of bioparticles was considered as a major operating factor to maintain the reactor productivity at a desired level.

  • PDF

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

The Study on Location and Adsorbate Interaction for Vanadium Species in $VO^{2+}-SAPO-5$ by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies

  • Back Gern-Ho;Park Sung-Gun;Lee Chul-Wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.138-154
    • /
    • 2005
  • Vanadium-incorporated aluminophosphate molecular sieve $VO^{2+}-SAPO-5$ was studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium structure and interaction with various adsorbate molecules. It was found that the main species at low concentration of vanadium is a monomeric vanadium units in square pyramidal or distorted octahedral coordination, both in oxidation state (IV) for the calcined hydrated material and in oxidation state (V) for the calcined material. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. It is suggested as a $VO(H_2O)_3^{2+}$ complex coordinated to two framework oxygen bonded aluminum. When calcined, hydrated $VO^{2+}-}SAPO-5$ is dehydrated at elevated temperature, a species loses its water ligands and transforms to $VO^{2+}$ ions coordinated to two framework oxygens (species B). Species B reduces its intensity, significantly after treatment with $O_2\;at\;600^{\circ}C$ for 5 h, thus suggesting oxidation of $V^{4+}\;to\;V^{5+}$. When dehydrated $VO^{2+}-SAPO-5$ contacts with $D_2O$ at room temperature, the EPR signal of species A is observed. Thus species assumed as a $VO^{2+}(O_f)_2(D_2O)_3$, by considering two framework oxygens. Adsorption of deuterated ethanol, propanol on dehydrated $VO^{2+}_{-}SAPO-5$ result in another new vanadium species E and F, respectively, which are identified as a $VO^{2+}-(CH_3CH_2OD)_3,\;VO^{2+}-(CH_3CH_2CH_2OD)_2$ complex. When deuterated benzene is adsorbed on dehydrated $VO^{2+}-SAPO-5$, another new vanadium species G, identified as a $VO^{2+}-(C_6D_6)$ is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.

Zeolite Based Membrane for Removal of Ammonium: A Review (효소 고정화막의 응용에 대한 총설)

  • Lee, Joo Yeop;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • Presence of ammonia in drinking water is very toxic to human health. Soluble ammonia contaminates ground water due to activities such as the use of fertilizer in crop, industrial effluents and burning of fossil fuel. Even low concentration of ammonia present in water will damage aqua environment such as marine organism. Membrane technology is an important process to remove ammonia from effectively from water. Flat sheet membrane, membrane contactor and membrane distillation are some of the methods used for water purification from ammonia. Membrane contractor is an efficient process in which ammonia is removed through liquid-gas or liquid-liquid mass transfer without change of phase unlike membrane distillation. However, the cost of ammonia removal in this method is high due to maintenance of very high pH. Zeolite has excellent ion exchange ability that enhances its ability to interact with ammonia and adsorb from wastewater. Mixed matrix membranes containing zeolite enhance the efficiency of ammonia adsorption and separation from wastewater. In this review the above discussed issues are summarized in detail.

Mineralogical Properties and Heavy Metal Removal Efficiency of Shells (패각의 광물학적 특성 및 중금속 제거 효율 평가)

  • Song, Hye Won;Kim, Jae Min;Kim, Young Hun;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • In this study, the removal efficiencies of heavy metals were evaluated using cockle, abalone, and scallop shells. Cockle, abalone, and scallop are composed mainly of aragonite, aragonite, and calcite, and calcite, respectively. The specific surface area of each shell varies from 2.7241 m2/g to 4.5481 m2/g and the order of that is scallop > abalone > cockle. All shells of cockle, abalone, and scallop had no As removal effect by adsorption and precipitation as pH increased. Pb was removed by all shell samples at initial reaction. Although the removal efficiency of Cd and Zn were depending on the reaction medium, that was increased in order of scallop > abalone > cockle. Heavy metal removal efficiency tends to be slightly higher for heated samples than with the raw materials, and higher as the specific surface area is larger.

Raoultella ornithinolytica as a Potential Candidate for Bioremediation of Heavy Metal from Contaminated Environments

  • Laila Ibrahim Faqe Salih;Rezan Omer Rasheed;Sirwan Muhsin Muhammed
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.895-908
    • /
    • 2023
  • Disposal of waste containing heavy metals into the environment is a major threat to human health and can result in toxic or chronic poisoning in aquatic life. In the current study, metal-resistant Raoultella ornithinolytica was isolated from metal-contaminated samples collected from the Tanjaro River, located southwest of Sulaymaniyah, Iraq. R. ornithinolytica was identified by partial amplification of 16S rRNA. The uptake potency of heavy metals was assessed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and indicated that R. ornithinolytica removed 67, 89, 63.4, 55.6, 56.5, 65, and 61.9% of Cd, Pb, Cr, Ni, Zn, Co, and Fe, respectively. These removal rates were influenced by temperature, pH, and contact time; at 35℃ and pH 5 with a change in the incubation time, the reduction rate improved from 89 to 95% for Pb, from 36.4 to 45% for Cu, and from 55.6 to 64% for Ni. Gene analysis indicated that R. ornithinolytica contained pbrT, chrB, nccA, iroN, and czcA genes, but the pcoD gene was absent. Energy-dispersive X-ray spectroscopy (EDS) images showed evidence of metal ion binding on the cell wall surface with different rates of binding. Transmission electron microscopy (TEM) detected different mechanisms for metal particle localization; cell surface adsorption was the main mechanism for Pb, Zn, and Co uptake, while Cd, Ni, and Fe were accumulated inside the cell. The current study describes, for the first time, the isolation of R. ornithinolytica from metal-contaminated water, which can be used as an eco-friendly biological expedient for the remediation and detoxification of metals from contaminated environments.