• Title/Summary/Keyword: H$_2$ algorithm

Search Result 878, Processing Time 0.038 seconds

Throughput Analysis for Cyclic Queueing Networks with Production Blocking (봉쇄를 갖는 순환 대기네트워크의 수율 분석)

  • Kim, H.G.;Lie, C.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.1
    • /
    • pp.3-15
    • /
    • 1996
  • An approximation algorithm is presented for cyclic queueing networks with finite buffers. The algorithm decomposes the queueing network into individual queues with revised arrival and service process and revised queue capacity. Then, each queue is analyzed in isolation. The service process reflects the additional delay a unit might undergo due to blocking and the arrival process is described by a 2-phases Coxian ($C_2$) distribution. The individual queues are modelled as $C_2/C_2$/1/B queues. The parameters of the individual queues are computed approximately using an iterative scheme. The population constraint of the closed network is taken into account by ensuring that the sum of the average queue lengths of the individual queues is equal to the number of customers of the network. Extensive numerical experiments show that this method provides a fairly good estimation of the throughput.

  • PDF

Post-filtering in Low Bit Rate Moving Picture Coding, and Subjective and Objective Evaluation of Post-filtering (저 전송률 동화상 압축에서 후처리 방법 및 후처리 방법의 주관적 객관적 평가)

  • 이영렬;김윤수;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1518-1531
    • /
    • 1999
  • The reconstructed images from highly compressed MPEG or H.263 data have noticeable image degradations, such as blocking artifacts near the block boundaries, corner outliers at cross points of blocks, and ringing noise near image edges, because the MPEG or H.263 quantizes the transformed coefficients of 8$\times$8 pixel blocks. A post-processing algorithm has been proposed by authors to reduce quantization effects, such as blocking artifacts, corner outliers, and ringing noise, in MPEG-decompressed images. Our signal-adaptive post-processing algorithm reduces the quantization effects adaptively by using both spatial frequency and temporal information extracted from the compressed data. The blocking artifacts are reduced by one-dimensional (1-D) horizontal and vertical low pass filtering (LPF), and the ringing noise is reduced by two-dimensional (2-D) signal-adaptive filtering (SAF). A comparison study of the subjective quality evaluation using modified single stimulus method (MSSM), the objective quality evaluation (PSNR) and the computation complexity analysis between the signal-adaptive post-processing algorithm and the MPEG-4 VM (Verification Model) post-processing algorithm is performed by computer simulation with several MPEG-4 image sequences. According to the comparison study, the subjective image qualities of both algorithms are similar, whereas the PSNR and the comparison complexity analysis of the signal-adaptive post-processing algorithm shows better performance than the VM post-processing algorithm.

  • PDF

Fast Mode Decision for MPEG-2 to H.264 Transcoding (MPEG-2에서 H.264로 변환하기 위한 고속 모드 결정 기법)

  • Kim, Won-Kyun;Park, Kyung-Jun;You, Jong-Min;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.269-277
    • /
    • 2007
  • In this paper, we present a efficient transcoding method from MPEG-2 to H.264. The proposed transcoder is the transcoding method for spatial domain which consists of MPEG-2 decoder part and H.264 encoding part. In transcoder, we can get useful information to estimate less probable modes from MPEG-2 decoder. Using this information, H.264 encoder chooses the macroblock mode of I-frame and P-frame adaptively to reduce the whole complexity of the transcoder. Our experimental result shows that the proposed algorithm can archive about $30\sim60%$ computational saving without significant degradation of visual quality and increasing of bit rate.

LEAF CELLULAR AUTOMATA

  • Okayama, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.295-299
    • /
    • 2000
  • We have developed bio-system derived algorithm: Leaf Cellular Automata(LCA). LCA are one form of cellular automata. LCA are reffered to activity of a leaf. LCA have four layers: the "CO$_2$ Layer", the "Stoma Layer", the "Starch Layer" and the "Water Layer". In order to evaluate this optimization algorithm, we used a pattern matching problem.

  • PDF

Adaptive Background Subtraction Algorithm with Auto Brightness Control for Consumer-type Cameras

  • Thongkamwitoon T.;Aramvith S.;Chalidabhongse T. H.
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.156-165
    • /
    • 2005
  • This paper presents a new auto brighoess control algorithm fur adaptive background subtraction. The algorithm is designed to cope with the problem of auto-brightness adjustment feature of consumer-type cameras. The experimental results show the proposed method improves performance of the classification. This will be beneficial to many computer vision applications in term of reducing the cost of implementation and making them more available to the mass consumer market.

Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

  • Park, Sa-Rah;Jeon, Ho-Cheol;Kim, Rok-soon;Kim, Jong-Hyeon;Kim, Seung-Jin;Cho, Junghee;Jang, Soojeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval (OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가)

  • Choi, Suhwan;Bak, Juseon;Kim, JaeHwan;Baek, KangHyun
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

A Heuristic Algorithm for Optimal Facility Placement in Mobile Edge Networks

  • Jiao, Jiping;Chen, Lingyu;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3329-3350
    • /
    • 2017
  • Installing caching and computing facilities in mobile edge networks is a promising solution to cope with the challenging capacity and delay requirements imposed on future mobile communication systems. The problem of optimal facility placement in mobile edge networks has not been fully studied in the literature. This is a non-trivial problem because the mobile edge network has a unidirectional topology, making existing solutions inapplicable. This paper considers the problem of optimal placement of a fixed number of facilities in a mobile edge network with an arbitrary tree topology and an arbitrary demand distribution. A low-complexity sequential algorithm is proposed and proved to be convergent and optimal in some cases. The complexity of the algorithm is shown to be $O(H^2{\gamma})$, where H is the height of the tree and ${\gamma}$ is the number of facilities. Simulation results confirm that the proposed algorithm is effective in producing near-optimal solutions.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.