• Title/Summary/Keyword: H$_{}$ $\infty$/제어기

Search Result 325, Processing Time 0.025 seconds

A robust controller design for attitude control of hovering vehicle (수직부상기의 자세제어를 위한 강인한 제어기의 설계)

  • 최연욱;이형기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.41-49
    • /
    • 1997
  • This paper deals with the attitude control of a self-made VTOL vehicle which is round shape and has four fans and motors. Although hovering mechanisms are suitable for field work at a mountainous region or a building site etc., it is known that modeling the structure of the plant is quite difficult due to its unstable or uncertain characteristics. So, a robust controller is requried in order to cope with these uncertainties. WE first model the structure of the plant under the actual hovering setting and then determine the uncertainty of the acquired mathematical model by using system identification method as exactly as possible. We adopt the $H^{\infty}$ theory as a control algorithm because of its availability, and the structure of two-degree-of-freedom is used as a basic feedback control system to improve the transient response of the plant. Finally, we show the appropriateness of the designed controller through simulations and experiments. That is, the proposed VTOL system is able to maintain its roubust performance in spite of parameter variations and existing disturbances..

  • PDF

Design of Robust Motion Controllers with Internal-Loop Compensator (내부루프 보상기를 가지는 강인 동작 제어기의 설계)

  • Kim, Bong-Geun;Jeong, Wan-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1501-1513
    • /
    • 2001
  • Disturbance observer, adaptive robust control, and enhanced internal model control are model based disturbance attenuation methods famous for robust motion controller which can satisfy desired performance and robustness of high-speed/high-accuracy positioning systems. In this paper, these are shown to be the same scheme with different parameterizations. To do this, a generalized framework, called as RIC(robust internal-loop compensator) is proposed and the conventional schemes are analyzed in the RIC framework. Through this analysis, it can be shown that there are inherent similarities between the schemes and advantages of the RIC in the viewpoint of controller design. This is verified through simulations and experiments.

Enhancement of Power System Stability using Flywheel Energy Storage System (플라이휠 에너지 저장장치를 이용한 전력계통의 안정도 향상)

  • Lee, Jeong-Phil;Han, Snag-Chul;Han, Young-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.79.2-79.2
    • /
    • 2011
  • 플라이 휠 에너지 저장장치(Flywheel Energy Storage System: FESS)는 전기 에너지를 회전 운동 에너지로 저장하였다가 필요시 회전 운동에너지를 전기 에너지로 변환하여 재사용 가능한 에너지 저장장치 이다. 최근 전력 변환 기술의 발전으로 인하여 플라이휠 에너지 저장 장치의 에너지 입출력 속도가 빨라지고 대용량의 에너지를 저장할 수 있게 되었다. 본 논문에서는 이러한 플라이휠 에너지 저장 장치의 전력 입출력 특성을 이용하여 전력 시스템에서 발생하는 저주파 진동(Low frequency oscillation)을 억제하는 방안을 제시 하여 안정도를 향상 시키고자 하였다. 전력 시스템은 발전조건, 전송조건, 부하조건에 따라 동작 조건이 지속적으로 변하고 있다. 이러한 동작 환경 변화는 전력 시스템에 대한 수학적인 표현과 실제 전력계통간의 차이가 발생하기 때문에 정확한 제어 목적을 달성하기가 힘들다. 따라서 본 논문에서는 제어기 설계 단계에서 전력 계통의 불확실성을 고려할 수 있는 $H_{\infty}$ 제어 기법을 이용하여 플라이휠 에너지 저장장치를 위한 강인 제어기를 설계 하였다. 제안한 플라이휠 에너지 저장장치의 강인 제어기의 유용성을 입증하기 위하여 1기 무한대 모선에 적용한 결과를 비선형 시뮬레이션을 통하여 다양한 외란이 발생한 경우에 외란 억제 성능과 강인성에 대하여 고찰 하였으며, 제안한 방식이 기존의 전력계통 안정화 장치(Power system stabilizer: PSS) 보다 효율적이며 전력계통의 안정도 향상에 크게 기여함을 보이고자 하였다.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

A Study of Robust Vibration Control for a Multi-Layer Structure (다층상구조물의 강인 진동제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Jung, Hae-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1212-1219
    • /
    • 2009
  • In this paper, a state feedback gain controller using linear matrix inequality(LMI) for the multi-objective synthesis is designed, in the multi-layer structure with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

Implementation of Synchronization Algorithm for Networked Multi-Motors (네트워크기반 복수전동기의 동기제어알고리즘 구현)

  • Lee Hong-Hee;Jung Eui-Heon;Kim Jung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.270-273
    • /
    • 2002
  • 복수구동장치를 사용하여 작업을 수행하는 시스템은 동기화를 위해 기계적인 제한조건을 두고 운용하는 경우 지속적인 유지보수가 요구되고 작업 정밀도가 떨어진다 이러한 단점을 보완하기 위해 개별적인 구동장치의 제어루프 외부에 동기화를 위한 제어루프를 추가하는 방법이 제안되었다. 본 논문에서는 CAN(Controller Area Network)으로 연결된 두 대의 서보앰프를 구동하여 주어진 작업을 수행하는 경우 외란과 내부 파라미터 변동에 강인한 $H^{\infty}$ 제어기를 설계하고 이를 이용하여 동기제어 알고리즘을 구현하고자한다.

  • PDF

Position control fo a flexible gantry robot arm using smart actuators (스마트 작동기를 이용한 갠트리형 유연로봇팔의 위치제어)

  • 한상수;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1800-1803
    • /
    • 1997
  • This paper presents new feedback actuators to achieve an accurate position control of a flexible gnatry robot arm. the translational motion in the plane is generated by two d.c.motors and controlled by emplying elecor-rheological(ER) clutch acutators. The generated motion can be continuously controlled by controlling the intensity of lectric field imposed to the ER fluid domain which tunes the transmitted torque of the ER clutch. n the other hand, during control action of the translational motion a flexible arm attached to the moving mass produces undesirable oscillatins due to its inherent flexibility. The oscillations are actively suppressed by applying feedback voltages to piezoceramic acutators bonded on the surface of the flexible arm. The control electric fields to be applied to the ER clutch and the control voltage for the piezoceramic actuator are determined via the loop shaping esign procedures(LSDP) in the H.inf. control technique. Comsequently, an accuate positiion control at the end-point of the flexible am is achieved during planar motion.

  • PDF

1-DOF Haptic Interface Controller Design considering Transparency and Robust Stability (투명성과 강인 안정성을 고려한 1자유도 햅틱 인터페이스 제어기 설계)

  • Eom, Gwang-Sik;Seo, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.213-219
    • /
    • 2000
  • In this paper, a controller design method is proposed for haptic interface considering transparency and robust stability. For this, a performance index for the transparency as performance measure is defined in the points of impedance matching and the optimal solution which is minimizing the performance index is obtained by solving H2 optimal problem. In haptic interface, the modeling uncertainties can be restricted to that of haptic device. To implement the robust stabilizing haptic controller to the uncertainties of haptic device, a robust stable condition using H$\infty$ norm from small gain theorem is proposed. To verify the effectiveness of the proposed haptic controller design scheme, numerical examples and experimental results are illustrated for virtual wall consisting of stiffness and damping factor.

  • PDF