• Title/Summary/Keyword: Gyroscope Sensors

Search Result 110, Processing Time 0.025 seconds

Error Analysis of the Navigation System Integrating Attitude GPS and low-Cost INS

  • Lee, Jae-Ho;Seo, Hung-Serk;Sung, Tae-Kyung;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.5-141
    • /
    • 2001
  • An attitude GPS receiver with 3 antennas obtains 3-dimensional attitude using GPS carrier phase measurement INS obtains the 3 dimensional navigation solution for IMU consisting of accelerometers and gyro. Ground-alignment process for the low -cost INS cannot be performed well due to the large sensor noise. Using the standard GPS receiver, however, continuous in-flight alignment for the INS becomes possible, and consequently, the errors in IMU sensors and navigation solution can be compensated. Especially with attitude measurement from the attitude GPS receiver, the compensation of errors in gyroscope and attitude would be done respite of the vehicle´s dynamics and their error covariance would be reduced. This paper presents ...

  • PDF

Overview of sensor fusion techniques for vehicle positioning (차량정밀측위를 위한 복합측위 기술 동향)

  • Park, Jin-Won;Choi, Kae-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2016
  • This paper provides an overview of recent trends in sensor fusion technologies for vehicle positioning. The GNSS by itself cannot satisfy precision and reliability required by autonomous driving. We survey sensor fusion techniques that combine the outputs from the GNSS and the inertial navigation sensors such as an odometer and a gyroscope. Moreover, we overview landmark-based positioning that matches landmarks detected by a lidar or a stereo vision to high-precision digital maps.

Analysis of Cantilevered Structure Rotating on an Eccentric Axis (외팔보형 구조물의 편심축 회전운동 해석)

  • 조지현;윤신일;한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.115-120
    • /
    • 2001
  • A gyroscope is a rotating body possessing one axis of symmetry and whose rotation about the symmetry axis is relatively large compared with the rotation about any other axis. Tuning fork is this type of structure that various modem gyro-sensors are based on. In this paper, dynamic behavior of a cantilevered beam subjected ta a base rotation with respect to the eccentric axis that is parallel to the beam axis is analyzed. The final equations of motion in terms of generalized coordinates can be solved with numerical scheme with various values of angular velocities and angular accelerations of the rotating axis. In contrast to the case of rotating cantilever beam like helicopter blade, the rotational motion with respect to the beam axis has effect to decrease the stiffness of the beam and has unstable region depending on the magnitude of the rotational angular velocity and angular acceleration.

  • PDF

Development of Inertial Measurement Sensor Using Magnetic Levitation

  • Kim, Young D.;Cho, Kyeum R.;Lee, Dae W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2005
  • An INS(Inertial Navigation System) is composed of a navigation computer and an IMU(Inertial Measurement Unit), and can be applied to estimate a vehicle's state. But the inertial sensors assembled in the IMU are too complicated and expensive to use for the general application purpose. In this study, a new concept of inertial sensor system using magnetic levitation is proposed. The proposed system is expected to replace one single-axis rate or position gyroscope, and one single-axis accelerometer concurrently with a relatively simple structure. A simulation of the proposed system is given to describe the capability of this new concept.

Smartphone racing game controller UX testing (스마트폰 레이싱 게임 조작기 UX 평가)

  • Chung, Donghun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.143-154
    • /
    • 2015
  • This study aims to evaluate smartphone gaming controllers. Diffusion of smartphone makes its users to play smartphone games in ease and comfort and its built-in sensors deliver new gaming experience to the users. Based on the concept how the controller system is important, the current research also implies the importance of customizing service which gives users a selection to deploy a controller. To explore the interaction effect of controllers and customizing on interactivity, flow, usability, attitude, and intention, the research constructs 3(gyroscope, wheel, and button controllers) by 2(default and customizing setting) experimental design and forty college students played Gameloft's Asphalt 8: Airborne in a within subject design. The results showed that interaction effect and customizing main effect were not found, but controller main effect was statistically significant. Button controller is superior to those other two in more detail. It implies that it is still not useful to play new types of gaming controller, and a customizing service. It suggests that smartphone games should more focus on improving optimal user experience with built-in sensor controllers.

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

Indoor Localization Algorithm Using Smartphone Sensors and Probability of Normal Distribution in Wi-Fi Environment (Wi-Fi 환경에서 센서 및 정규분포 확률을 적용한 실내 위치추정 알고리즘)

  • Lee, Jeong-Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1856-1864
    • /
    • 2015
  • In this paper, the localization algorithm for improving the accuracy of the positioning using the Wi-Fi fingerprint using the normal distribution probability and the built-in typed accelerometer sensor, the gyroscope sensor of smartphone in the indoor environment is proposed. The experiments for analyzing the performance of the proposed algorithm were carried out at the region of the horizontal and vertical 20m * 10m in the engineering school building of our university, and the performance of the proposed algorithm is compared with the fingerprint and the DR (dead reckoning) while user is moving according to the assigned region. As a result, the maximum error distance in the proposed algorithm was decreased to 2cm and 36cm compared with two algorithms, respectively. In addition to this, the maximum error distance was also less than compared with two algorithms as 16.64cm and 36.25cm, respectively. It can be seen that the fingerprint map searching time of the proposed algorithm was also reduced to 0.15 seconds compared with two algorithms.

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

Development of Medical Rehabilitation Game and Rehabilitation Possibility Using EMG and Gyroscope Signal (근전도 및 자이로스코프 신호를 활용한 의료용 재활게임 개발과 재활치료 가능성)

  • Lim, Jong Heon;Lee, Joon Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • For fast recovery from physical discomfort and getting back to normal life, many rehabilitation treatments have been performed on patients. Computer games have been one of such treatments that are able to apply to patients effectively. However, because most of such games are locational-based, it is hard to figure out exact medical condition of patients that provide more information to medical doctors. This paper presents a rehabilitation game for patients, which is locational-based as well as rotational-based, who are having external wound or aging diseases by using electromyography signal and gyroscopic sensors. Through this game, we are able to understand how to lead the patients to involve in physical therapy more and how to obtain exact conditions of patients from the games. From several experiments, we found out that our games are able to make patients to increase their physical activity and possibility.

Vibration-Based Signal-Injection Attack Detection on MEMS Sensor (진동 신호를 사용한 MEMS 센서 대상 신호오류 주입공격 탐지 방법)

  • Cho, Hyunsu;Oh, Heeseok;Choi, Wonsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.411-422
    • /
    • 2021
  • The autonomous driving system mounted on the unmanned vehicle recognizes the external environment through several sensors and derives the optimum control value through it. Recently, studies on physical level attacks that maliciously manipulate sensor data by performing signal-injection attacks have been published. signal-injection attacks are performed at the physical level and are difficult to detect at the software level because the sensor measures erroneous data by applying physical manipulations to the surrounding environment. In order to detect a signal-injection attack, it is necessary to verify the dependability of the data measured by the sensor. As so far, various methods have been proposed to attempt physical level attacks against sensors mounted on autonomous driving systems. However, it is still insufficient that methods for defending and detecting the physical level attacks. In this paper, we demonstrate signal-injection attacks targeting MEMS sensors that are widely used in unmanned vehicles, and propose a method to detect the attack. We present a signal-injection detection model to analyze the accuracy of the proposed method, and verify its effectiveness in a laboratory environment.