• Title/Summary/Keyword: Gyrodinium

Search Result 45, Processing Time 0.028 seconds

Molecular Discrimination of Dinoflagellates Cochlodinium Polykrikoides Margalef, Gyrodinium Impudicum Fraga et Bravo and Gymnodinium Catenatum Graham using RAPD-PCR Method (RAPD-PCR 방법을 이용한 Cochlodinium polykrikoides Gyrodinium impudicum, Gymnodinium catenatum의 분자생물학적 진단)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.651-657
    • /
    • 2003
  • Randomly amplified polymorphic DNA (RAPD) analysis was used to study genetic relationships among C. polykrikoides, G. impudicum and G. catenatum, which possess similar morphological features. Four of 12 primers were selected and 59 amplification products ranged from 0.2 kb to 3.0 kb. The number of polymorphic products in C. polykrikoides, G. impudicum and G. catenatum was 16 (27.1%), 8 (13.5%), and 16 (27.1%), respectively, while 17 were monomorphic. Number of species-specific bounds was 26 (44.0%), 34 (57.6%), 26 (44.0%) in C. polykrikoides, G. impudicum and G. catenatum, respectively. The genetic similarity between C. polykrikoides and G. impudicum/G. catenatum was 0.83, whereas G. impudicum and G. catenatum was 0.78. Our results suggest that C. polykrikoides, G. impudicum and G. catenatum are extremely different on the basis of RAPD analysis, despite similarity based on their morphology. The RAPD technique appears to be efficient in detecting genetic variation in these dinoflagellates.

Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta

  • Yoo, Yeong Du;Yoon, Eun Young;Lee, Kyung Ha;Kang, Nam Seon;Jeong, Hae Jin
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.343-354
    • /
    • 2013
  • To explore the interactions between the mixotrophic dinoflagellate Biecheleria cincta (previously Woloszynskia cincta) and heterotrophic protists, we investigated whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oxyrrhis marina, and Polykrikos kofoidii, and the ciliate Strobilidium sp. were able to feed on B. cincta. We also measured growth and ingestion rates of O. marina and Strobilidium sp. on B. cincta as a function of prey concentration. In addition, these rates were measured for other predators at single prey concentrations at which the growth and ingestion rates of O. marina and Strobilidium sp. were saturated. All grazers tested in the present study were able to feed on B. cincta. B. cincta clearly supported positive growth of O. marina, G. dominans, and Strobilidium sp., but it did not support that of G. moestrupii, G. spirale, and P. kofoidii. The maximum growth rates of Strobilidium sp. and O. marina on B. cincta (0.91 and 0.49 $d^{-1}$, respectively) were much higher than that of G. dominans (0.07 $d^{-1}$). With increasing the mean prey concentration, the specific growth rates of O. marina and Strobilidium sp. on B. cincta increased, but either became saturated or slowly increased. The maximum ingestion rate of Strobilidium sp. (1.60 ng C $predator^{-1}\;d^{-1}$) was much higher than that of P. kofoidii and O. marina (0.55 and 0.34 ng C $predator^{-1}\;d^{-1}$) on B. cincta. The results of the present study suggest that O. marina and Strobilidium sp. are effective protistan grazers of B. cincta.

Rheological Properties of Exopolysaccharide p-KG03 Produced by Marine Microalgae Gyrodinium impudicum strain KG03

  • Im, Jeong-Han;Kim, Seong-Jin;Park, Gyu-Jin;An, Se-Hun;Lee, Hyeon-Sang;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.611-614
    • /
    • 2003
  • The rheological properties of exopolysaccharide, p-KG03, produced by marine microalgae Gyrodinium impudicum strain KG03 had been studied. The intrinsic viscosity of this p-KG03 was calculated to 65.22 and 50.75 $d{\ell}/g$ using Huggins and Kramer equations (xanthan gum 24.41 and 24.03). Aqueous dispersions at p-KG03 concentrations ranging from 0.1 to 1.0 % (w/w) showed marked shear-thinning properties as Power-Law behavior. In aqueous dispersions of p-KG03 1.0 %, consistency index (K) and flow behavior index (n) were 2,172 and 0.52. The apparent viscosity and the influence of shear rate on different conditions as p-KG03 concentrations, pH, NaCl, $CaCl_2$ and temperature in aqueous solutions were measured. And p-KG03 had mixed with aqueous solutions of xanthan gum and gellan gum, and invested the change of mixed aqueous solution behavior.

  • PDF

Coastal Algal Blooms Caused by the Cyst-Forming Dinoflagellates (휴안포자(Cyst)를 형성하는 과편모조류에 의한 적조발생)

  • KIM Hak-Gyoon;PARK Joo-Suck;LEE Sam-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.468-474
    • /
    • 1990
  • Eight species, 6 Dinophyceae and 2 Raphidophyceae, caused a bloom in the southeastern coastal waters mainly in Chinhae Bay in Korea from March to September since 1982. Scrippsiella trochoidea and Heterocapsa triquetra bloomed in March then ensued a vernal species Heterosigma akashiwo. And Cochlodinium sp. and Alexandrium affine were occurred as causative organism in fall next to the estival dinoflagellates Gyrodinium instriatum and Pheopolykrikos hartmannii. Among them, spatio-temporal similarity of outbreak was significant in Heterosigma akashiwo since 1983, and a bit apparent for Cochlodinium sp.. The density was in the level from $10^3\;to\;10^5\;cells/ml$ and was dependent on the cell size rather than environmental characteristics.

  • PDF

Comparison of the Morphological Characteristics and the 24S rRNA Sequences of Cochlodinium polykrikoides and Gyrodinium impudicum (Cochlodinium polykrikoides와 Gyrodinium impudicum 형태특성과 24S rRNA 유전자 염기서열 비교)

  • Park, Jong-Gyu;Park, Young-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 1999
  • When the first red tide alert by Cochlodinium polykrikoides was alarmed around the Oenarodo coast on Aug. 27, 1997, there co-occurred two chain-forming naked dinoflagellates which were different sized but looked fairly similar. The analyses of 24S rRNA sequences of these species showed that their gene sequences had only 74.9% identity. This low value implies that they are quite different species. After isolation and cultivation of each species, the morphological characteristics were observed. This revealed that the larger species ranging from 20 to 35 ${\mu}m$ was the well known, Cochlodinium polykrikoides and the smaller one ranging from 12 to 25 ${\mu}m$ was Gyrodinium impudicum which had not been reported in Korea. As their 24S rRNA sequences had not been analysed yet, we deposited the sequences in Genbank. At that time of the investigation. the red tide was caused by G. impudicum of which maximum cell counts reached up to 30,000 cells $ml^{-1}$. In this study we describe the morphological characteristics and the behavioral patterns of each species which can be easily observed with light microscope or stereomicroscope. In addition, their morphology transformed by the fixation with Lugol's solution are also characterized. which can help to discriminate each one in the fixed sample.

  • PDF

Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020

  • Eom, Se Hee;Jeong, Hae Jin;Ok, Jin Hee;Park, Sang Ah;Kang, Hee Chang;You, Ji Hyun;Lee, Sung Yeon;Yoo, Yeong Du;Lim, An Suk;Lee, Moo Joon
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The mixotrophic dinoflagellate Tripos furca causes red tides in the waters of many countries. To understand its population dynamics, mortality due to predation as well as growth rate should be assessed. Prior to the present study, the heterotrophic dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, Protoperidinium steinii, and mixotrophic dinoflagellate Fragilidium subglobosum were known to ingest T. furca. However, if other common heterotrophic protists are able to feed on T. furca has not been tested. We explored interactions between T. furca and nine heterotrophic dinoflagellates and one naked ciliate. Furthermore, we investigated the abundance of T. furca and common heterotrophic protists in coastal-offshore waters off Yeosu, southern Korea, on Jul 31, 2020, during its red tide. Among the tested heterotrophic protists, the heterotrophic dinoflagellates Aduncodinium glandula, Luciella masanensis, and Pfiesteria piscicida were able to feed on T. furca. However, the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium jinhaense, Gyrodinium moestrupii, Oblea rotunda, Oxyrrhis marina, and the naked ciliate Rimostrombidium sp. were unable to feed on it. However, T. furca did not support the growth of A. glandula, L. masanensis, or P. piscicida. Red tides dominated by T. furca prevailed in the South Sea of Korea from Jun 30 to Sep 5, 2020. The maximum abundance of heterotrophic dinoflagellates in the waters off Yeosu on Jul 31, 2020, was as low as 5.0 cells mL-1, and A. glandula, L. masanensis, and P. piscicida were not detected. Furthermore, the abundances of the known predators F. subglobosum, N. scintillans, P. kofoidii, and Protoperidinium spp. were very low or negligible. Therefore, no or low abundance of effective predators might be partially responsible for the long duration of the T. furca red tides in the South Sea of Korea in 2020.

Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists

  • Kim, So Jin;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Sung Yeon;Park, Tae Gyu
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.309-324
    • /
    • 2017
  • Recently, the heterotrophic nanoflagellate Katablepharis japonica has been reported to feed on diverse red-tide species and contribute to the decline of red tides. However, if there are effective predators feeding on K. japonica, its effect on red tide dynamics may be reduced. To investigate potential effective protist predators of K. japonica, feeding by the engulfment-feeding heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, the peduncle-feeding HTDs Luciella masanensis and Pfiesteria piscicida, the pallium-feeding HTD Oblea rotunda, and the naked ciliates Strombidium sp. (approximately $20{\mu}m$ in cell length), Pelagostrobilidium sp., and Miamiensis sp. on K. japonica was explored. We found that none of these heterotrophic protists fed on actively swimming cells of K. japonica. However, O. marina, G. dominans, L. masanensis, and P. piscicida were able to feed on heat-killed K. japonica. Thus, actively swimming behavior of K. japonica may affect feeding by these heterotrophic protists on K. japonica. To the contrary, K. japonica was able to feed on O. marina, P. kofoidii, O. rotunda, Miamiensis sp., Pelagostrobilidium sp., and Strombidium sp. However, the specific growth rates of O. marina did not differ significantly among nine different K. japonica concentrations. Thus, K. japonica may not affect growth of O. marina. Our findings suggest that the effect of predation by heterotrophic protists on K. japonica might be negligible, and thus, the effect of grazing by K. japonica on populations of red-tide species may not be reduced by mortality due to predation by protists.

Genetic Evolution and Characteristics of Ichthyotoxic Cochlodinium polykrikoides(Gymnodiniales, Dinophyceae) (어류치사성 Cochlodinium polykrikoides 적조생물의 유전적 진화 및 특성)

  • Cho, Eun-Seob;Jeong, Chang-Su
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1453-1463
    • /
    • 2007
  • This study presents a molecular phylogenetic analysis of the harmful dinoflagellate Cochlodinium polykrikoides, by use of partial sequence of small subunit (SSU) rRNA gene from most of the major taxa(24 species) in dinoflagellates. The class Dinophyceae clade formed a strong monophyletic relationship with C. polykrikoides and several taxa. On the basis of deeper nodes, the phylogenetic relationships placed C. polykrikoides closer to the order Prorocentrales rather than to the order Gymnodiniales, which was supported by a strong bootstrap value (100%) in the analyses of Neighbor-Joining and Parsimony methods. There is strong support for C. polykrikoides being placed in the same branch as Gymnodiniaceae and being connected in a clade with Prororcentrum micans among Prorocentrales. Morphological data show that C. polykrikoides is well associated with the genus Gyrodinium; however, this species is genetically closer to Gymnodinium than to Gyrodinium. The placement of C. polykrikoides always formed an independent branch separated from other dinoflagellates. In conclusion, planktonic P. micans plays an important role as an ancestor of Gymnodinium, whereas C. polykrikoides appears to be used an intermediate position between P. micans and Gymnodinium based on evolution.

Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum

  • Lee, Kyung Ha;Jeong, Hae Jin;Yoon, Eun Young;Jang, Se Hyeon;Kim, Hyung Seop;Yih, Wonho
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.153-163
    • /
    • 2014
  • Mesodinium rubrum is a cosmopolitan ciliate that often causes red tides. Predation by heterotrophic protists is a critical factor that affects the population dynamics of red tide species. However, there have been few studies on protistan predators feeding on M. rubrum. To investigate heterotrophic protists grazing on M. rubrum, we tested whether the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium spirale, Luciella masanensis, Oblea rotunda, Oxyrrhis marina, Pfiesteria piscicida, Polykrikos kofoidii, Protoperidinium bipes, and Stoeckeria algicida, and the ciliate Strombidium sp. preyed on M. rubrum. G. dominans, L. masanensis, O. rotunda, P. kofoidii, and Strombidium sp. preyed on M. rubrum. However, only G. dominans had a positive growth feeding on M. rubrum. The growth and ingestion rates of G. dominans on M. rubrum increased rapidly with increasing mean prey concentration < $321ngCmL^{-1}$, but became saturated or slowly at higher concentrations. The maximum growth rate of G. dominans on M. rubrum was $0.48d^{-1}$, while the maximum ingestion rate was 0.55 ng C $predator^{-1}d^{-1}$. The grazing coefficients by G. dominans on populations of M. rubrum were up to $0.236h^{-1}$. Thus, G. dominans may sometimes have a considerable grazing impact on populations of M. rubrum.