• Title/Summary/Keyword: Gypsum die

Search Result 8, Processing Time 0.021 seconds

THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE (석고 다이에 대한 다이 강화제의 영향)

  • Kim, Young-Rim;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

The Surface Properties using various separating materials of dental gypsum products (다양한 석고 분리제를 이용한 치과용 석고의 표면 특성에 관한 연구)

  • Sung, Hwan-Kyung;Lee, Gyu-Sun;Hwang, Jae-Sun
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Gypsum products are used for the preparation of stone casts of oral and maxillofacial structures and as important adjuncts to dental laboratory operations involved in the production of dental prosthesis. Accuracy and dimensional stability over time are properties of concern in fixed prothodontics. Gypsum products used in denstry are a form calcium sulfate hemihydrate and are classified as 1 of 5 types according to International Standard Organization(ISO) 6873. All die materials exhibit some dimensional change during setting, but expansion and contraction during setting and dimensional changes in response to varations in temperature and the water-powder ratio must be minimal. Although numerous investigators have studied the properties of die materials, several products have been introduced recently with manufacturer claims of superior dimensional stalility. The aim of this study was to determine the surface properties using various separating materials of dental gypsum products The results were as follows 1. In the comparison of first and second plaster distances before separation in different separating agent, there was no significant difference except using Trio separating agent. The interface using Trio separating agent forms like to pores. 2. In the comparison of first and second plaster distances after separation in different separating agent, there was significant difference. The interface of plasters using WD-40, Trio and Vaseline was showed some gaps. Each they were measured at average 7.97 $\pm$ 2.07 ${\mu}m$, 63.09 $\pm$ 23.25 ${\mu}m$, 27.59 $\pm$ 4.19 ${\mu}m$. 3. In the comparison of the surface, the surface of control sample(using none seperating agent) showed irregular properties and the surface using Trio and Vaseline become wrinkled. Specially the surface using Vaseline was showed shiny properties. But the surface using MAGIC SEP, Plaster seperating agent, WD-40 showed regular properties.

  • PDF

A comparison of surface hardness and microstructural characteristics between a type IV stone with and without die hardening treatment, and a polyurethane resin die material (IV형 경석고와 경화처리된 IV형 경석고 그리고 폴리우레탄 수지 치형재의 표면경도와 미세구조 특성의 비교)

  • Lee, Wan-Sun;Kim, Ji-Hwan;Kim, Tae-Suk;Kim, Nam-Sic;Yu, Chin-Ho
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Purpose: This study compared the surface hardness (Vickers) and microstructural characteristics between a type IV stone with and without die hardening treatment, a polyurethane die material. Methods: Materials used were a type IV stone(MG Crystal Rock), two die hardeners (Hardening bath, Epox-it), and a polyurethane resin material(Polyluck). Six specimens per group were prepared according to manufacturer's directions. The prepared specimens were tested by means of hardness test, one-way ANOVA analysis, scanning electron microscopic(SEM) observations and energy dispersive spectroscopic(EDS) analysis. Results: In the hardness test and its statistical analysis, there was no significant difference in the surface hardness between a type IV stone and type IV stone with die hardener coating, type IV stone mixed with an epoxy like material instead of water. In contrast, polyurethane resin material exhibited significantly greater surface hardness than other specimen groups (p<0.05). Conclusion: By considering the results of the hardness test, SEM observations and EDS analysis, although the die hardeners on type IV stone did not show remarkable improvement in surface hardness, the die hardener coating on the surface of type IV stone material did show decrease of microporous and improvement of surface defects.

FRACTURE STRENGTH OF IMPROVED DENTAL STONE ACCORDING TO WATER/POWDER RATIO (혼수비에 따른 초경석고의 파절강도)

  • Eoum Jung-Hee;Park Charn-Woon;Park Kwang-Sun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.220-229
    • /
    • 2001
  • This study was performed to evaluate the fracture resistance of three improved die stone materials according to water/powder ratio. There are lots of handling conditions which affect the physical properties of improved dental stone, and it's well known that the water/powder ratio significantly affect the strength of die stone. If water/power ratio was incorrect, following disadvantages were showed : (1) susceptibility to dimensional change due to abrasion, (2) limited reproduction of fine detail, (3) lack of strength. The maxillary master casts were made of additional silicone impressions(Exaflex, GC America. Inc. USA). Three type IV die stones such as Fuji Rock (GC Europe Intreleuvenlaan, Leuven, Belgium), Velmix(Kerr, Manufacturing company, USA), and Crytal Rock( Maruishi Gypsum Co. Ltd, Japan) were tested. A total of 160 casts were prepared, separated, and tested on the Instron Testing Machine(Model 4201, Co. USA). The obtained results of this study were as follows : 1. Fuji Reck and Velmix less 3ml than the water/power ratio of manufacturer's instruction showed the highest resistance to fracture. According to increasing water/powder ratio, fracture resistance was significantly increased(P<0.05). Crystal Rock showed the highest fracture value when it was mixed with the water/power ratio of manufacturer's instruction. 2. Water/powder ratio of the manufacturer's instructions and less 3ml than that showed lower fracture value of hand mix than that of vacuum mix. Water/powder ratio of more 3ml, 6ml than manufacturer's instructions was not significantly different between hand mix and vacuum mix(p>0.05). 3. Velmix had the highest viscoelastic value among three die materials when it was mixed with the manufacturer's instruction. Viscoelasticity was decreased according to increasing water/powder ratio.

  • PDF

Modified soft tissue cast for fixed partial denture: a technique

  • Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.33-36
    • /
    • 2011
  • In process of fabrication of a fixed partial denture, dies are trimmed to expose margins of the preparations. The need for the soft tissue cast is quite evident as the soft tissue emergence profile that surrounds the prepared tooth is destroyed in the process of fabrication. This article describes a modified technique to fabricate the soft tissue cast for the conventional fixed partial denture. The impression made with the polyvinylsiloxane was first poured to prepare the die cast. After retrieval of the cast, the same impression was poured second time with the resin based resilient material to cover the facial and proximal gingival areas. The remaining portion of the impression was poured with the gypsum material. This technique does not require additional clinical appointment, second impression procedure, technique sensitive manipulations with impression, or cumbersome laboratory procedures. The simplicity of this technique facilitates and justifies its routine use in fabrication of the fixed partial denture.

Impact of surface roughness of gypsum materials on adaptation of zirconia cores

  • Kim, Ki-Baek;Kim, Jae-Hong;Kim, Sa-Hak
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • PURPOSE. The present study investigated the influences of various gypsum materials on the precision of fit of CAD/CAM-fabricated prostheses and analyzed their correlation with surface roughness. MATERIALS AND METHODS. The master model of the mandibular right first molar was replicated, and four experimental groups based on two types of Type IV stone (GC Fujirock EP, Die keen) and two types of scannable stone (Aesthetic-Basegold, Everest Rock) were created to include a total of 40 specimens, 10 in each group. The surface roughness of the working models for the respective experimental groups was measured. Once the zirconia cores had been fabricated, the marginal and internal fits were measured with a digital microscope using the silicone replica technique. The mean and standard deviation of the respective points of measurement were computed and analyzed through the one-way ANOVA and Tukey's HSD test. The correlation between surface roughness and the precision of fit of the zirconia core was analyzed using the Pearson correlation analysis (${\alpha}$=.05). RESULTS. The zirconia cores fabricated from the scannable stone working models exhibited a superior precision of fit as compared to those fabricated from the Type IV stone working models. The correlation analysis results showed a clear positive correlation between surface roughness and the precision of fit of zirconia cores in all of the experimental groups (P<.05). CONCLUSION. The results confirmed that the surface roughness of dental working models has a decisive influence on the precision of fit of zirconia cores.

THE EFFECTS OF SPURE AND INVENTS ON THE CASTING ACCURACY AND POROSITY OF TI-NI CASTINGS

  • Cho Lee-Ra;Yi Yang-Jin;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2003
  • Statement of problem. Titanium-Nickel alloy might be used in various prosthetic restorations since it has a unique property such as super-elasticity and high fatigue resistance. However, little is known about the casting ability of this alloy. Purpose. This in vitro study compared the casting accuracy and the porosity made with different investments and various sprue designs to ascertain what casting condition would be better for the fabrication of Ti-Ni cast restorations. Material and methods. A total of 70 Ti-Ni alloy crowns were made and divided into 7 groups of 10 copings on a metal master die. For measuring the effect of the sprue numbers, two groups with one and two 8-gauge sprues were compared. Moreover, the results of the conventional sprue and the double thickness sprues were compared. Three investments were used; carbon free phosphate bonded investment, titanium investment and gypsum bonded investment. The cast restorations were evaluated at 48 points on the entire circumferential margin with a stereomicroscope measuring in micrometers. Each crown was radiographically examined for casting defects and porosity. Data on casting accuracy were analyzed using two-way and Post hoc Scheffe's comparison to determine whether significant differences existed at the 95% confidence level. Student-Newman-Keuls test were performed to identify significant differences in the number of voids. Results. The double sprueing group and double thickness group had significantly less marginal discrepancy than the single sprueing group (P<.05 and P<.01, respectively). The castings with phosphate bonded investment showed the least marginal discrepancy and the smoothest surface. The castings invested in the gypsum bonded investment had the greatest gaps in margin and the largest failure rate. The double sprueing group and phosphate bonded investment group had significantly smaller void numbers and smaller void size than the other groups. Conclusion. Within the limitations of this in vitro study, the casting accuracy of the groups using thicker, double sprue design and the phosphate bonded investment was significantly superior. Moreover, void number and size were less than other groups.

Process Optimization of Polyurethane Pre-polymer for Medical Application (의료용 폴리우레탄 Pre-polymer의 중합공정 최적화)

  • Hur, Kwang-Tae;Koo, Yang;Ha, Man-Kyung;Kwak, Jae-Seob
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, the modern society in development and industrial growth is investing a lot of time and much effort to improvement and environment of life quality. Thus, the casting tape which uses environmentally friendly and human body friendly water hardening process Polymer is rapidly substituted for the gypsum cast product which has been plentifully used in medical treatment. Until currently, prior researches have a tendency to focusing the analysis about chemical creation expense and reaction quality rather than the issue about optimization of the process for this polymerization. In the polymerization process which has been accomplished with actual same chemical creation expense, there has been a problem which is the possibility of getting a different result. This is because the optimization of respectively control factors is not accomplished which affect at polymerization process. Therefore, this research sees the chemical qualities of casting tape Polymer, consequently selects the polymerization process which is suitable. And, by using a experimental design, this research will evaluate the affects which the respective factors have on remaining NCO and viscosity. futhermore, this research will carry out the process optimization which can get the above results.

  • PDF