• Title/Summary/Keyword: Gwangju River

Search Result 81, Processing Time 0.021 seconds

Seasonal Variation of Phytoplakton and Phylogenetic Characteristics of Cyanotoxin synthetase genes within Youngsan River in Gwangju (광주지역 영산강 내 식물플랑크톤의 계절적 변동과 남조류 독소합성유전자의 계통발생학적 특성)

  • Haram Kim;Gwangwoon Cho;Gyeongrok Son;Dong, Jang;Gwangyeob Seo;Yunhee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.315-328
    • /
    • 2023
  • Cyanobacteria have been used as pollution indicator species in freshwater ecosystems, and identifying their fluctuations can be an important part about management of surface waters globally. Cyanotoxins produced by cyanobacteria are directly or indirectly a threat to human and environmental health. In order to confirm the potential risk of these cyanotoxins, the fluctuations of phytoplankton and phylogenetic analysis of cyanotoxin synthetase genes were conducted at each point in the Yeongsan River water system in Gwangju from November 2021 to October 2022. Diatoms which grow well in winter were dominant at 99.4 ~ 99.5%, and diatoms and green algae were dominant from the spring to autumn when the water temperature rises. Stephanodiscus spp. were dominant at 92.7 to 97.5 % at all sites in the winter, and Aulacoseira spp., which grow in warm water temperatures, were dominant in summer and autumn. Microcystis aeruginosa was dominant at 25.2% in summer only at site 5. mcyB and anaC have been detected as cyanotoxin synthetase genes. The phylogenetic tree of anaC could be divided into two groups (Group 1 & Group 2). Group 1 contained Aphanizomenon sp. and Cuspidothrix issatschenkoi. It is combined with Aphanizomenon sp. and Cuspidothrix issatschenkoi, which are known to produce cyanotoxins.

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju (광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구)

  • Sun-Jung Kim;Ji-Young Park;Seung-Ho Kim;Min-Hwa Lim;Ji-Yong Yu;Kyu-Sung Han;Se-Il Park;Gwangyeob Seo;Gwangwoon Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.

A Study on the Water Quality Characteristics of the Reservoirs in Gwangju City (광주지역 저수지수 수질특성에 관한 연구)

  • Kim, Dong-Soo;Park, Jong-Whan;Kim, Yun-Hee;Song, Hyung-Myung;Park, Jong-Tae
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study was performed to investigate the physico-chemical properties and phytoplankton concentration from February to December, 2007 in Gwangju area reservoirs. Water samples from 20 reservoirs were analyze d. As results of the water quality analysis, the average pH was 7.6 and annual pH were 6.3~9.6. The higher pH of 8.6~9.6 were showed from March to August due to eutrophication. Chlorophyll-a concentration ranged from 0.4 to $164.3\;mg/m^3$. The highest chlorophyll-a concentration was observed in August. BOD was correlated with SS, T-N, and Chlorophyll-a(R=0.82, 0.90 and 0.84) respectively. COD was correlated with BOD, SS and Chlorophyll-a(R= 0.89, 0.77 and 0.76) respectively. The T-N/T-P ratios were 4~281, so phosph orus was considered to be the limiting factor in most of points. The trophic state showed eutrophicate states in Gwangju reservoirs. Therefore it was necessary to monitor continuously. In order to monitor the reservoirs, an algae prediction system must be used.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF

High Incidence of Campylobacter Contamination in the Yeong-San (영산강 유역에서의 고빈도 병원성 감염 여부)

  • Unno, Tatsuya;Cha, Sung-Min;Kim, Jun-Ha;Hur, Hor-Gil
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.831-833
    • /
    • 2008
  • Intestinal pathogenic bacteria, Campylobacter, were detected in water samples collected from the Yeong-san river. 50 ml of water samples were filtered and incubated in enrichment broth. PCR using campylobacter genus specific primers showed positive results in all sites. We report the epidemical potential public health risk.

  • PDF

Evaluation of Pollutant Characteristics in Yeongsan River Using Multivariate Analysis (영산강 수계 오염특성 파악을 위한 다변량 통계분석법의 적용)

  • Jung, Soojung;Lee, Dongjin;Hwang, Kyungsup;Lee, Kyounghee;Choi, Kyoungchuk;Im, Sangsun;Lee, Yunhee;Lee, Jaeyoung;Lim, Byoungjin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.368-377
    • /
    • 2012
  • This study evaluated the water quality of Yeongsan River by multivariate analysis using the data collected during 2001~2010. Water quality in Yeongsan River could be explained up to 75.2% by four factors, which were included in loading of nutrients (32.021%) and organic matters (17.453%), seasonal variation (14.775%) and microbes (10.951%). The results of cluster analysis were classified into three groups by factor 1 and 2, which has different water quality characteristics. Group 1 included sampling stations located in the upper stream and estuary dyke of Yeongsan River, group 2 included Gwangju 1 and Gwangsan affected by domestic sewage of Gwangju-cheon, and group 3 included sampling stations located in the midstream around the livestock farm and farmland.

Community Structure of Benthic Macroinvertebrate Affected by Lake Water and Sewage Effluent at Urban Stream in Gwangju, Korea

  • Yoon, Sang-Hoon;Jung, Suk-Kyeong;Seo, Gwang-Yeob;Cho, Young-Gwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.325-336
    • /
    • 2017
  • The ecosystem in the Gwangju Stream has taken a wide range of disturbance such as the discharging water of sewage treatment plant, the lake water and the river water from different water system over the past decade. This study was figured out some significant influence factors by analyzing the relationship between biotic and abiotic factors in the urban stream. Abiotic components included 15 water quality variables which were measured in five sampling sites along the stream from October 2014 to July 2015, whereas the benthic macroinvertebrates found in those sites were used to estimate various biotic indices representing the ecological status of the community. The results of correlation analyses indicated that abiotic factors by human activities affected on the inhabitation of benthic macroinvertebrates more than biotic factors. The results of cluster analyses and ANOVA tests also showed that biotic and abiotic characteristics were clearly different in season. The main influence factors of cluster analysis by sites were $NH_3-N$, EPT(I) and DO. It was considered that more various statistical analyses would be necessary to find some different relationships and influence factors between biotic and abiotic variables in the urban stream.

Water Quality Assesment of the Lower Yeongsan River System (영산강 하류권역 하천수의 수질평가)

  • Youn, Seok-Tai;Koh, Yeong-Koo;Oh, Kang-Ho;Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.259-270
    • /
    • 2003
  • To investigate the water quality and the pollution state of lower Yeongsan river system, 38 water samples were taken from the main stream of the Yeongsan river, Gomakwon and Hampyeong streams of the system in dry and flood seasons, May and August, 2001. The Yeongsan river is typically natural in accordance with pH-& diagram. But the chemistry based on Piper's diagram indicates that the river is influenced by seawater. BOD increases as the sampling sites are approaching the downstream in Gomakwon and Hampyeong streams overwhelming WQS V grade of 12.40mg/l. T-N and T-P of the river are mainly loaded not in above branch streams but in the main stream of the river, which are caused by manure for farming, domestic animal discharges and life-sewage, in possible. Meanwhile, heavy metal contents are below WQS or not detect in whole water samples. So, it shows that the above river waters be polluted by not industrial but life/agricultural foul waters.

Geochemical Characteristics and Contamination of Surface Sediments in Streams of Gwangju City (광주광역시 하천의 표층퇴적물에 대한 지구화학적 특성과 오염)

  • Kim, Joo-Yong;Koh, Young-Koo;Youn, Seok-Tai;Shin, Sang-Eun;Park, Bae-Young;Moon, Byoung-Chan;Kim, Hai-Gyoung;Oh, Kang-Ho
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.346-360
    • /
    • 2003
  • In order to investigate the geochemical characteristics of surface sediments in streams of Gwangju City, sediment samples from the main stream of Yeongsan river, Hwangryong river, and Gwangjucheon in the city were collected and analyzed for grain size and metal and organic carbon contents. The sediment types of the streams widely vary from pebble to mud. The metal contents in the sediments from Yeongsan river and Hwangryong river are mainly dependent on the grain size of the sediments and the geology around the streams, while the sediments in Gwangiucheon are controlled by organic matter contents from the domestic sewage. The enrichment factor (Ef) and index of geoaccumulation (Igeo) representing the degree of metal contamination in the sediments are relatively low in the mainstream of Yeongsan river and Hwangryong river. However, those of Gwangjucheon show EF values of P=8.30, Cu=5.54, Zn=14.28 and Pb=7.41 and Igeo values of P=3.78, Cu=2.79, Zn=3.66 and Pb=1.59. The heavy metal contamination is especially significant near the area where the Seobangcheon and Donggyecheon branches of Gwanjucheon, join. Therefore, it is suggested that the metallic contaminations of these small streams are significantly influenced by the domestic sewage of the city.