• 제목/요약/키워드: Gut development

검색결과 235건 처리시간 0.097초

Oral Administration of Mice with Cell Extracts of Recombinant Lactococcus lactis IL1403 Expressing Mouse Receptor Activator of NF-kB Ligand (RANKL)

  • Xuan, Biao;Park, Jongbin;Lee, Geun-Shik;Kim, Eun Bae
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1061-1073
    • /
    • 2022
  • Receptor activator of NF-kB ligand (RANKL) is known to play a major role in bone metabolism and the immune system, and its recombinant form has been expressed in bacterial systems for research since the last two decades. However, most of these recombinant forms are used after purification or directly using living cells. Here, there were cell extracts of recombinant Lactococcus lactis expressing mouse RANKL (mRANKL) used to evaluate its biological activity in mice. Mice were divided into three groups that were fed phosphate-buffered saline (PBS), wild-type L. lactis IL1403 (WT_CE), and recombinant L. lactis expressing mRANKL (mRANKL_CE). The small intestinal transcriptome and fecal microbiome were then profiled. The biological activity of mRANKL_CE was confirmed by studying RANK-RANKL signaling in vitro and in vivo. For small intestinal transcriptome, differentially expressed genes (DEGs) were identified in the mRANKL_CE group, and no DEGs were found in the WT_CE group. In the PBS vs. mRANKL_CE gene enrichment analysis, upregulated genes were enriched for heat shock protein binding, regulation of bone resorption, and calcium ion binding. In the gut microbiome analysis, there were no critical changes among the three groups. However, Lactobacillus and Sphingomonas were more abundant in the mRANKL_CE group than in the other two groups. Our results indicate that cell extracts of mRANKL_CE can play an effective role without a significant impact on the intestine. This strategy may be useful for the development of protein drugs.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy

  • Jihong Bae; Kwangcheon Park;You-Me Kim
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.3.1-3.21
    • /
    • 2022
  • Cancer is one of the leading causes of death worldwide and the number of cancer patients is expected to continuously increase in the future. Traditional cancer therapies focus on inhibiting cancer growth while largely ignoring the contribution of the immune system in eliminating cancer cells. Recently, better understanding of immunological mechanisms pertaining to cancer progress has led to development of several immunotherapies, which revolutionized cancer treatment. Nonetheless, only a small proportion of cancer patients respond to immunotherapy and maintain a durable response. Among multiple factors contributing to the variability of immunotherapy response rates, commensal microbiota inhabiting patients have been identified as one of the most critical factors determining the success of immunotherapy. The functional diversity of microbiota differentially affects the host immune system and controls the efficacy of immunotherapy in individual cancer patients. Moreover, clinical studies have demonstrated that changing the gut microbiota composition by fecal microbiota transplantation in patients who failed a previous immunotherapy converts them to responders of the same therapy. Consequently, both academic and industrial researchers are putting extensive efforts to identify and develop specific bacteria or bacteria mixtures for cancer immunotherapy. In this review, we will summarize the immunological roles of commensal microbiota in cancer treatment and give specific examples of bacteria that show anticancer effect when administered as a monotherapy or as an adjuvant agent for immunotherapy. We will also list ongoing clinical trials testing the anticancer effect of commensal bacteria.

Exploring the variations of the pancreatic ductal system: a systematic review and meta-analysis of observational studies

  • Adil Asghar;Ravi Kant Narayan;Nagavalli Basavanna Pushpa;Apurba Patra;Kumar Satish Ravi;R. Shane Tubbs
    • Anatomy and Cell Biology
    • /
    • 제57권1호
    • /
    • pp.31-44
    • /
    • 2024
  • The exocrine part of the pancreas has a duct system called the pancreatic ductal system (PDS). Its mechanism of development is complex, and any reorganization during early embryogenesis can give rise to anatomical variants. The aim of this study is to collect, classify, and analyze published evidence on the importance of anatomical variants of the PDS, addressing gaps in our understanding of such variations. The MEDLINE, Web of Science, Embase, and Google Scholar databases were searched to identify publications relevant to this review. R studio with meta-package was used for data extraction, risk of bias estimation, and statistical analysis. A total of 64 studies out of 1,778 proved suitable for this review and metanalysis. The meta-analysis computed the prevalence of normal variants of the PDS (92% of 10,514 subjects). Type 3 variants and "descending" subtypes of the main pancreatic duct (MPD) predominated in the pooled samples. The mean lengths of the MPD and accessory pancreatic duct (APD) were 16.53 cm and 3.36 cm, respectively. The mean diameters of the MPD at the head and the APD were 3.43 mm and 1.69 mm, respectively. The APD was present in only 41% of samples, and the long type predominated. The pancreatic ductal anatomy is highly variable, and the incorrect identification of variants may be challenging for surgeons during ductal anastomosis with gut, failure to which may often cause ductal obstruction or pseudocysts formation.

The Effects of Fiber Source on Organ Weight, Digesta pH, Specific Activities of Digestive Enzymes and Bacterial Activity in the Gastrointestinal Tract of Piglets

  • Ma, Yongxi;Li, Defa;Qiao, S.Y.;Huang, C.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1482-1488
    • /
    • 2002
  • The aim of this study was to explore the effects of fiber sources on gut development and bacterial activity in the gastrointestinal tract of piglets. Eighteen crossbred (Duroc${\times}$Landrace${\times}$Yorkshire) barrows were fed a basal diet based on corn plus soybean meal or similar diets in which a portion of the corn and soybean was replaced by 5% wheat bran or 5% sugar beet pulp. The results indicate that pigs fed diets containing 5% wheat bran or 5% sugar beet pulp had lower liver weights than control pigs (p<0.01). The relative weight of the pancreas in pigs fed diets containing 5% sugar beet pulp was greater than that of control pigs or pigs fed diets containing 5% wheat bran (p<0.05). The pH of the ileal digesta of pigs fed the diet containing 5% wheat bran was higher than that of control pigs or pigs fed the diet containing 5% sugar beet pulp (p<0.05). The lipase activity in the distal jejunum, proximal, and distal ileum of pigs fed the control diet was higher than that of pigs fed the diets containing 5% wheat bran or 5% sugar beet pulp (p<0.05). The concentration of volatile fatty acids anterior to the caecum was greater for the pigs fed the diet containing 5% sugar beet pulp, while the concentration of volatile fatty acids posterior to the ileum was greater for the pigs fed the diet containing 5% wheat bran. This means that sugar beet pulp increased the bacterial fermentation precaecum, while wheat bran increased the bacterial fermentation post-ileum. The concentration of bacterial nitrogen and bacterial protein/total protein in ileal digesta of pigs fed the control diet was higher (p<0.05) than that of pigs fed the diets contained either fiber source. Bacterial protein/total protein in the feces of pigs fed the diet containing 5% sugar beet pulp was higher than that of pigs fed the control diet. This means that inclusion of 5% wheat bran or sugar beet pulp in diets influenced the development of the digestive tract of piglet. The mechanism by which dietary fiber reduced specific activity of lipase needs further consideration. Dietary fiber influenced the bacterial activity in the digestive tract of piglets, sugar beet pulp increased the fermentation in the upper gastrointestinal tract, and while wheat bran increased the fermentation in the lower gastrointestinal tract.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Short Bowel Syndrome as the Leading Cause of Intestinal Failure in Early Life: Some Insights into the Management

  • Goulet, Olivier;Nader, Elie Abi;Pigneur, Benedicte;Lambe, Cecile
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제22권4호
    • /
    • pp.303-329
    • /
    • 2019
  • Intestinal failure (IF) is the critical reduction of the gut mass or its function below the minimum needed to absorb nutrients and fluids required for adequate growth in children. Severe IF requires parenteral nutrition (PN). Pediatric IF is most commonly due to congenital or neonatal intestinal diseases or malformations divided into 3 groups: 1) reduced intestinal length and consequently reduced absorptive surface, such as in short bowel syndrome (SBS) or extensive aganglionosis; 2) abnormal development of the intestinal mucosa such as congenital diseases of enterocyte development; 3) extensive motility dysfunction such as chronic intestinal pseudo-obstruction syndromes. The leading cause of IF in childhood is the SBS. In clinical practice the degree of IF may be indirectly measured by the level of PN required for normal or catch up growth. Other indicators such as serum citrulline have not proven to be highly reliable prognostic factors in children. The last decades have allowed the development of highly sophisticated nutrient solutions consisting of optimal combinations of macronutrients and micronutrients as well as guidelines, promoting PN as a safe and efficient feeding technique. However, IF that requires long-term PN may be associated with various complications including infections, growth failure, metabolic disorders, and bone disease. IF Associated Liver Disease may be a limiting factor. However, changes in the global management of IF pediatric patients, especially since the setup of intestinal rehabilitation centres did change the prognosis thus limiting "nutritional failure" which is considered as a major indication for intestinal transplantation (ITx) or combined liver-ITx.

Effects of dietary enzyme cocktail on diarrhea and immune responses of weaned pigs

  • Kang, Joowon;Cho, Jeeyeon;Jang, Kibeom;Kim, Junsu;Kim, Sheena;Mun, Daye;Kim, Byeonghyeon;Kim, Younghwa;Park, Juncheol;Choe, Jeehwan;Song, Minho
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.525-530
    • /
    • 2017
  • Weaning is the most stressful event for nursery pigs because they are moved from familiar to unfamiliar environments. In addition, weaned pigs have immature digestive and immune systems. This situation makes weaned pigs susceptible to diseases and makes the absorption of nutrients from diets difficult. A feed approach, such as dietary enzyme supplementation, can be considered a solution. This study investigated the effects of dietary enzyme cocktail on diarrhea and immune responses of weaned pigs. A total 36 weaned pigs ($5.92{\pm}0.48kg\;BW$; 28 d old) were randomly allotted to 2 dietary treatments (3 pigs/pen, 6 replicates/treatment) in a randomized complete block design. The dietary treatments were a typical diet based on corn and soybean meal (CON) and CON with 0.05% enzyme cocktail (Cocktail; combination of xylanase, ${\alpha}-amylase$, protease, ${\beta}-glucanase$, and pectinase). Pigs were fed their respective diets for 6 wk. Incidence of diarrhea, packed cell volume (PCV), white blood cells (WBC) count, and immunoglobulin content were measured. A significantly lower incidence of diarrhea (p < 0.05) was observed in the Cocktail group as compared with the CON group. The Cocktail group also showed a decreased PCV (p < 0.1) on d 3 after weaning than the CON group. However, no differences were observed for number of WBC and contents of immunoglobulin G, M, and A between the Cocktail and CON groups. Consequently, inclusion of an enzyme cocktail in diets for weaned pigs had a positive influence on gut health by reducing the incidence of diarrhea in the present study.

꼬치동자개 Pseudobagrus brevicorpus 인공종묘의 성분화 과정 (Sexual Differentiation in Korean Stumpy Bullhead Pseudobagrus brevicorpus Derived from Artificial Fertilization)

  • 오민기;박종영;강언종;양상근;김응오;조용철
    • 한국어류학회지
    • /
    • 제20권4호
    • /
    • pp.255-262
    • /
    • 2008
  • 멸종위기야생동식물 1급으로 지정된 꼬치동자개, Pseudobagrus brevicorpus의 종복원을 위해 인위적인 교배를 통하여 획득한 자치어를 대상으로 성분화 과정을 조사하여 성적임성 여부를 확인하였다. 부화 후 4~5일째 자어에서 생식융기 1쌍이 장과 중신관 사이에서 관찰되었고, 그 후 유사분열이 활발히 진행되었다. 부화 후 20일째 치어에서 난원세포의 출현으로 난소 분화가 시작되었으며, 부화 후 30~40일째를 거치면서 염색인기와 주변인기의 난모세포로 성장하였다. 난황은 부화 후 80일째의 자어에서 생성되기 시작하였고, 부화 후 100일째가 되어 eosin에 염색되는 난황구가 생성되었다. 이후 난모세포는 난황이 지속적으로 축적되면서 세포의 크기와 수가 증가하기 시작하였고, 부화 후 약 10개월째에는 난막과 여포세포층에 의해 둘러싸여진 난모세포로 분화하였다. 한편 정소는 부화 후 25일경 치어에서 분화되기 시작하였고, 40일경 유사분열을 통해 정원세포를 둘러싸는 포낭을 형성하였다. 부화 후 100일째가 되면 정소는 정소엽 구조를 형성하였고 hematoxylin에 매우 진하게 염색되는 정모세포로 분화하였다. 부화 후 7개월째 치어의 정소엽 내부에 정세포가 출현한 이후, 부화 후 만 1년을 경과한 치어에서 최초로 성숙한 정자가 출현하였다. 위 결과를 바탕으로 인공적으로 부화된 꼬치동자개 자치어의 성분화는 다른 종에서 보이는 것과 같이 정상적인 발달을 보인다고 판단되었다.

Galectin-9 Induced by Dietary Prebiotics Regulates Immunomodulation to Reduce Atopic Dermatitis Symptoms in 1-Chloro-2,4-Dinitrobenzene (DNCB)-Treated NC/Nga Mice

  • Kim, Jeong A;Kim, Sung Hak;Kim, In Sung;Yu, Da Yoon;Kim, Gwang Il;Moon, Yang Soo;Kim, Sung Chan;Lee, Seung Ho;Lee, Sang Suk;Yun, Cheol-Heui;Choi, In Soon;Cho, Kwang Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1343-1354
    • /
    • 2020
  • Atopic dermatitis (AD) is a skin disorder that causes chronic itch. We investigated the inhibitory effects of a mixture of prebiotic short-chain galacto-oligosaccharides and long-chain fructooligosaccharides (scGOS/lcFOS), inulin, or β-glucan on AD development in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. Mice were randomly assigned to six groups: untreated mice, AD control, positive control (DNCB-treated NC/Nga mice fed a dietary supplement of Zyrtec), and DNCB-treated NC/Nga mice fed a dietary supplement of prebiotics such as scGOS/lcFOS (T1), inulin (T2), or β-glucan (T3). The prebiotic treatment groups (T1, T2, and T3) showed suppression of AD symptoms, Th2 cell differentiation, and AD-like skin lesions induced by DNCB. In addition, prebiotic treatment also reduced the number of microorganisms such as Firmicutes, which is associated with AD symptoms, and increased the levels of Bacteroidetes and Ruminococcaceae, which are associated with alleviation of AD symptoms. Our findings demonstrate the inhibitory effects of prebiotics on AD development by improving the Th1/Th2 cytokine balance and beneficial symbiotic microorganisms in in vitro and in vivo models.