DOI QR코드

DOI QR Code

Galectin-9 Induced by Dietary Prebiotics Regulates Immunomodulation to Reduce Atopic Dermatitis Symptoms in 1-Chloro-2,4-Dinitrobenzene (DNCB)-Treated NC/Nga Mice

  • Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Kim, Sung Hak (Department of Animal Science, Chonnam National University) ;
  • Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Kim, Gwang Il (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Moon, Yang Soo (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, Sung Chan (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Lee, Seung Ho (Department of Nano-Bioengineering, Incheon National University) ;
  • Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Yun, Cheol-Heui (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, In Soon (Department of Life Science, Silla University) ;
  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • Received : 2020.05.08
  • Accepted : 2020.07.21
  • Published : 2020.09.28

Abstract

Atopic dermatitis (AD) is a skin disorder that causes chronic itch. We investigated the inhibitory effects of a mixture of prebiotic short-chain galacto-oligosaccharides and long-chain fructooligosaccharides (scGOS/lcFOS), inulin, or β-glucan on AD development in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. Mice were randomly assigned to six groups: untreated mice, AD control, positive control (DNCB-treated NC/Nga mice fed a dietary supplement of Zyrtec), and DNCB-treated NC/Nga mice fed a dietary supplement of prebiotics such as scGOS/lcFOS (T1), inulin (T2), or β-glucan (T3). The prebiotic treatment groups (T1, T2, and T3) showed suppression of AD symptoms, Th2 cell differentiation, and AD-like skin lesions induced by DNCB. In addition, prebiotic treatment also reduced the number of microorganisms such as Firmicutes, which is associated with AD symptoms, and increased the levels of Bacteroidetes and Ruminococcaceae, which are associated with alleviation of AD symptoms. Our findings demonstrate the inhibitory effects of prebiotics on AD development by improving the Th1/Th2 cytokine balance and beneficial symbiotic microorganisms in in vitro and in vivo models.

Keywords

References

  1. Darrigade AS, Legrand A, Andreu N, Jacquemin C, Boniface K, Taieb A, et al. 2018. Dual efficacy of dupilumab in a patient with concomitant atopic dermatitis and alopecia areata. Br. J. Dermatol. 179: 534-536. https://doi.org/10.1111/bjd.16711
  2. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. 2006. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38: 441-446. https://doi.org/10.1038/ng1767
  3. Gavrilova T. 2018. Immune dysregulation in the Pathogenesis of atopic dermatitis. Dermatitis 29: 57-62. https://doi.org/10.1097/DER.0000000000000340
  4. Koberle M, Biedermann T. 2018. Microbiome, atopic eczema and blockade of type 2 immunity. Hautarzt 69: 197-203. https://doi.org/10.1007/s00105-018-4129-2
  5. Barbarot S, Aubert H. 2017. Physiopathologie de la dermatite atopique: pathophysiology of atopic dermatits. Ann. Dermatol. Venereol. 144: 14-20.
  6. Craig JM. 2016. Atopic dermatitis and the intestinal microbiota in humans and dogs. Vet. Med. Sci. 2: 95-105. https://doi.org/10.1002/vms3.24
  7. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9: 313-323. https://doi.org/10.1038/nri2515
  8. Rastall RA, Gibson GR. 2015. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol. 32: 42-46. https://doi.org/10.1016/j.copbio.2014.11.002
  9. Wollina U. 2017. Microbiome in atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 10: 51-56. https://doi.org/10.2147/CCID.S130013
  10. Carlson JL, Erickson JM, Lloyd BB, Slavin JL. 2018. Health effects and sources of prebiotic dietary fiber. Curr. Dev. Nutr. 2: nzy005.
  11. Kim HJ, Lee SH, Go HN, Ahn JR, Kim HJ, Hong SJ. 2018. Effects of kestose on gut mucosal immunity in an atopic dermatitis mouse model. J. Dermatol. Sci. 89: 27-32. https://doi.org/10.1016/j.jdermsci.2017.10.006
  12. Broom LJ, Kogut MH. 2018. Gut immunity: its development and reasons and opportunities for modulation in monogastric production animals. Anim. Health Res. Rev. 19: 46-52. https://doi.org/10.1017/S1466252318000026
  13. Shin JH, Chung MJ, Seo JG. 2016. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of $CD4^+Foxp3^+$ T cells. Food Nutr. Res. 60: 32550. https://doi.org/10.3402/fnr.v60.32550
  14. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. https://doi.org/10.1006/abio.1987.9999
  15. Hwang JS, Kim JE, Yu YB, Im SH. 2013. Modulation of experimental atopic dermatitis by topical application of Gami-Cheongyelul-Sodok-Eum. BMC Complement. Altern. Med. 13: 312. https://doi.org/10.1186/1472-6882-13-312
  16. van Hamburg JP, de Bruijn MJ, Ribeiro de Almeida C, van Zwam M, van Meurs M, de Haas E, et al. 2008. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur. J. Immunol. 38: 2573-2586. https://doi.org/10.1002/eji.200737840
  17. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. 2010. Generation of regulatory dendritic cells and $CD4^+Foxp3^+$ T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad. Sci. USA 107: 2159-2164. https://doi.org/10.1073/pnas.0904055107
  18. Chabot S, Kashio Y, Seki M, Shirato Y, Nakamura K, Nishi N, et al. 2002. Regulation of galectin-9 expression and release in Jurkat T cell line cells. Glycobiology 12: 111-118. https://doi.org/10.1093/glycob/12.2.111
  19. Shin JH, Chung MJ, Seo JG. 2016. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of $CD4^+Foxp3^+$ T cells. Food Nutr. Res. 60: 32550. https://doi.org/10.3402/fnr.v60.32550
  20. Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B, Duncan AJ. 2007. Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Br. J. Nutr. 98: 364-372. https://doi.org/10.1017/S0007114507709091
  21. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. 2009. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101: 541-550. https://doi.org/10.1017/s0007114508019880
  22. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166-1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x
  23. Yu DY, Kim SH, Kim JA, Kim IS, Moon YS, Lee SS, et al. 2018. Effects of Rubus coreanus byproducts on intestinal microbiota and the immune modulation. Asian-Australas. J. Anim. Sci. 31: 429-438. https://doi.org/10.5713/ajas.17.0733
  24. Kim JE, Lee YK, Nam SH, Choi SI, Goo JS, Jang MJ, et al. 2010. The symptoms of atopic dermatitis in NC/Nga mice were significantly relieved by the water extract of Liriope platyphylla. Lab. Anim. Res. 26: 377-384. https://doi.org/10.5625/lar.2010.26.4.377
  25. Dhingra N, Guttman-Yassky E. 2014. A possible role for IL-17A in establishing Th2 inflammation in murine models of atopic dermatitis. J. Invest. Dermatol. 134: 2071-2074. https://doi.org/10.1038/jid.2014.141
  26. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, et al. 2012. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67: 343-352. https://doi.org/10.1111/j.1398-9995.2011.02771.x
  27. Amat F, Soria A, Tallon P, Bourgoin-Heck M, Lambert N, Deschildre A, et al. 2018. New insights into the phenotypes of atopic dermatitis linked with allergies and asthma in children: an overview. Clin. Exp. Allergy 48: 919-934. https://doi.org/10.1111/cea.13156
  28. de Kivit S, Kraneveld AD, Knippels LM, van Kooyk Y, Garssen J, Willemsen LE. 2013. Intestinal epithelium-derived galectin-9 is involved in the immunomodulating effects of nondigestible oligosaccharides. J. Innate Immun. 5: 625-638. https://doi.org/10.1159/000350515
  29. Marrs T, Sim K. 2018. Demystifying dysbiosis: Can the gut microbiome promote oral tolerance over IgE-mediated food allergy? Curr. Pediatr. Rev. 14: 156-163. https://doi.org/10.2174/1573396314666180507120424
  30. Marrs T, Flohr C. 2016. The role of skin and gut microbiota in the development of atopic eczema. Br. J. Dermatol. 175: 13-18. https://doi.org/10.1111/bjd.14907
  31. Nylund L, Satokari R, Nikkila J, Rajilic-Stojanovic M, Kalliomaki M, Isolauri E, et al. 2013. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol. 13: 12. https://doi.org/10.1186/1471-2180-13-12
  32. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. 2012. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 129: 434-440. https://doi.org/10.1016/j.jaci.2011.10.025
  33. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107: 129-134. https://doi.org/10.1067/mai.2001.111237
  34. Chua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH, et al. 2018. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154: 154-167. https://doi.org/10.1053/j.gastro.2017.09.006
  35. West CE, Ryden P, Lundin D, Engstrand L, Tulic MK, Prescott SL. 2015. Gut microbiome and innate immune response patterns in IgE-associated eczema. Clin. Exp. Allergy 45: 1419-1429. https://doi.org/10.1111/cea.12566
  36. Grewe M, Bruijnzeel-Koomen CA, Schopf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, et al. 1998. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 19: 359-361. https://doi.org/10.1016/S0167-5699(98)01285-7
  37. Thomsen SF. 2014. Atopic dermatitis: natural history, diagnosis, and treatment. ISRN. Allergy 2014: 354250.
  38. Sheikhi A, Giti H, Heibor MR, Jafarzadeh A, Shakerian M, Baharifar N, et al. 2017. Lactobacilus Delbrueckii subsp. Bulgaricus modulates the secretion of Th1/Th2 and Treg cell-related cytokines by PBMCs from patients with atopic dermatitis. Drug Res. (Stuttg) 67: 724-729. https://doi.org/10.1055/s-0043-117612
  39. Wallmeyer L, Dietert K, Sochorova M, Gruber AD, Kleuser B, Vavrova K, et al. 2017. TSLP is a direct trigger for T cell migration in filaggrin-deficient skin equivalents. Sci. Rep. 7: 774. https://doi.org/10.1038/s41598-017-00670-2
  40. Purushothaman B, Arumugam P, Song JM. 2018. A novel catecholopyrimidine based small molecule PDE4B inhibitor suppresses inflammatory cytokines in atopic mice. Front. Pharmacol. 9: 485. https://doi.org/10.3389/fphar.2018.00485
  41. Cho KK, Choi IS. 2017. Allergy immunity regulation and synergism of Bifidobacteria. J. Life Sci. 27: 482-499. https://doi.org/10.5352/JLS.2017.27.4.482
  42. Krieg AM. 2008. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27: 161-167. https://doi.org/10.1038/sj.onc.1210911
  43. Salem I, Ramser A, Isham N, Ghannoum MA. 2018. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 9: 1459. https://doi.org/10.3389/fmicb.2018.01459
  44. Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, et al. 2018. Microbiome and allergic diseases. Front. Immunol. 9: 1584. https://doi.org/10.3389/fimmu.2018.01584
  45. Carrera-Quintanar L, Lopez Roa RI, Quintero-Fabian S, Sanchez-Sanchez MA, Vizmanos B, Ortuno-Sahagun D. 2018. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm. 2018: 9734845.
  46. Requena T , Martinez-Cuesta MC , Pelaez C. 2018. Diet and microbiota linked in health and disease. Food Funct. 9: 688-704. https://doi.org/10.1039/C7FO01820G
  47. Park SM, Choi WS, Yoon Y, Jung GH, Lee CK, Ahn SH, et al. 2018. Breast abscess caused by Staphylococcus aureus in 2 adolescent girls with atopic dermatitis. Korean J. Pediatr. 61: 200-204. https://doi.org/10.3345/kjp.2018.61.6.200
  48. Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. 2014. Altered fecal microbiota composition associated with food allergy in infants. Appl. Environ. Microbiol. 80: 2546-2454. https://doi.org/10.1128/AEM.00003-14
  49. Kim MH, Suh DI, Lee SY, Kim YK, Cho YJ, Cho SH. 2016. Microbiome research in food allergy and atopic dermatitis. Allergy Asthma Respir. Dis. 4: 389-398. https://doi.org/10.4168/aard.2016.4.6.389
  50. Johnson CC, Ownby DR. 2017. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl. Res. 179: 60-70. https://doi.org/10.1016/j.trsl.2016.06.010
  51. Chang PV, Hao L, Offermanns S, Medzhitov R. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 111: 2247-2252. https://doi.org/10.1073/pnas.1322269111
  52. Shi Y, Xu LZ, Peng K, Wu W, Wu R, Liu ZQ, et al. 2015. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. Sci. Rep. 5: 17651. https://doi.org/10.1038/srep17651
  53. Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS, Shouche YS, Ghaskadbi SS. 2017. Gut microbial diversity assessment of indian Type-2-diabetics reveals alterations in eubacteria, archaea, and eukaryotes. Front. Microbiol. 8: 214.
  54. Duncan SH, Louis P, Flint HJ. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70: 5810-5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
  55. Kim M, Kim JE, Yoon YS, Seo JG, Chung MJ, Yum DY. 2016. A probiotic preparation alleviates atopic dermatitis-like skin lesions in murine models. Toxicol. Res. 32: 149-158. https://doi.org/10.5487/TR.2016.32.2.149
  56. Ivanov II, Honda K. 2012. Intestinal commensal microbes as immune modulators. Cell Host Microbe 12: 496-508. https://doi.org/10.1016/j.chom.2012.09.009
  57. Candela M, Rampelli S, Turroni S, Severgnini M, Consolandi C, De Bellis G, et al. 2012. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 12: 95. https://doi.org/10.1186/1471-2180-12-95

Cited by

  1. Targeting galectins in T cell-based immunotherapy within tumor microenvironment vol.277, 2020, https://doi.org/10.1016/j.lfs.2021.119426