• 제목/요약/키워드: Gust factor

검색결과 62건 처리시간 0.019초

A case study of gust factor characteristics for typhoon Morakat observed by distributed sites

  • Liu, Zihang;Fang, Genshen;Zhao, Lin;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.21-34
    • /
    • 2022
  • Gust factor is an important parameter for the conversion between peak gust wind and mean wind speed used for the structural design and wind-related hazard mitigation. The gust factor of typhoon wind is observed to show a significant dispersion and some differences with large-scale weather systems, e.g., monsoons and extratropical cyclones. In this study, insitu measurement data captured by 13 meteorological towers during a strong typhoon Morakot are collected to investigate the statistical characteristics, height and wind speed dependency of the gust factor. Onshore off-sea and off-land winds are comparatively studied, respectively to characterize the underlying terrain effects on the gust factor. The theoretical method of peak factor based on Gaussian assumption is then introduced to compare the gust factor profiles observed in this study and given in some building codes and standards. The results show that the probability distributions of gust factor for both off-sea winds and off-land winds can be well described using the generalized extreme value (GEV) distribution model. Compared with the off-land winds, the off-sea gust factors are relatively smaller, and the probability distribution is more leptokurtic with longer tails. With the increase of height, especially for off-sea winds, the probability distributions of gust factor are more peaked and right-tailed. The scatters of gust factor decrease with the mean wind speed and height. AS/NZ's suggestions are nearly parallel with the measured gust factor profiles below 80m, while the fitting curve of off-sea data below 120m is more similar to AIJ, ASCE and EU.

동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법 (The method using dynamic load and static load figures out gust factor of the membrane structure)

  • 왕본강;정재용;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 2008
  • 본 논문은 풍동실험과 정적하중 실험을 실시하여 강풍 설계시 대공간 구조물의 막구조 동적응답을 확인하여 거스트 계수(gust factor)를 산출해 보고자한다. 이를 위해 섬유재료의 변형률에 따라 하중을 구할 수 있는 막재료 성능실험과 4가지(saddle형, wave형, arch형, point형) 막구조 모형에 따른 횡방향 동적하중과 동적변형응답을 측정할 수 있는 풍동실험, 동적변형응답에 따라 정적하중을 구할 수 있는 정적하중실험을 실시함으로써 거스트 계수(gust factor)를 산출하였다.

  • PDF

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao;Zao Jin;Hao Wang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.309-323
    • /
    • 2024
  • The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

돌풍계수 가이던스에 관한 연구 (Study on the guidance of the gust factor)

  • 박효순
    • 대기
    • /
    • 제14권3호
    • /
    • pp.19-28
    • /
    • 2004
  • In this study, two years Automatic Weather Station (AWS) data observed near the coast and islands are used to evaluate gust factors only when time averaged wind speed is higher than 5 ms. The gust factors are quite different in spatial and temporal domain according to analysis method. As the averaged time is increased, the gust factors are also increased. But the gust factors are decreased when wind speed is increased. It is because each wind speed is averaged one and a maximum wind is the greatest one for each time interval. The result from t-test is shown that all data are included within the 99% significance level. A sample standard deviation of ten minutes and one minute are 0.137~0.197, 0.067~0.142, respectively. Recently, the gust factor provided at the Korea Meteorological Administration (KMA) Homepage is calculated with one-hour averaged method. All though this method is hard to use directly for forecasting the strong wind over sea and coast, the result will be a great help to express Ocean Storm Flash in the Regional Meteorological Offices and the Meteorological Stations.

Gust durations, gust factors and gust response factors in wind codes and standards

  • Holmes, John D.;Allsop, Andrew C.;Ginger, John D.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.339-352
    • /
    • 2014
  • This paper discusses the appropriate duration for basic gust wind speeds in wind loading codes and standards, and in wind engineering generally. Although various proposed definitions are discussed, the 'moving average' gust duration has been widely accepted internationally. The commonly-specified gust duration of 3-seconds, however, is shown to have a significant effect on the high-frequency end of the spectrum of turbulence, and may not be ideally suited for wind engineering purposes. The effective gust durations measured by commonly-used anemometer types are discussed; these are typically considerably shorter than the 'standard' duration of 3 seconds. Using stationary random process theory, the paper gives expected peak factors, $g_u$, as a function of the non-dimensional parameter ($T/{\tau}$), where T is the sample, or reference, time, and ${\tau}$ is the gust duration, and a non-dimensional mean wind speed, $\bar{U}.T/L_u$, where $\bar{U}$ is a mean wind speed, and $L_u$ is the integral length scale of turbulence. The commonly-used Durst relationship, relating gusts of various durations, is shown to correspond to a particular value of turbulence intensity $I_u$, of 16.5%, and is therefore applicable to particular terrain and height situations, and hence should not be applied universally. The effective frontal areas associated with peak gusts of various durations are discussed; this indicates that a gust of 3 seconds has an equivalent frontal area equal to that of a tall building. Finally a generalized gust response factor format, accounting for fluctuating and resonant along-wind loading of structures, applicable to any code is presented.

태풍 연직프로파일과 gust factor를 이용한 지상의 최대풍속 추정 (Estimation of the Maximum Wind to Surface Using Wind Profile in Typhoon and Gust Factor)

  • 정우식;박종길;최효진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.290-292
    • /
    • 2008
  • we applied Wind Field Module of PHRLM so that disaster prevention agency concerned can effectively estimate the possible strong wind damages by typhoon. In this study, therefore, we estimated wind speed at 300m level using 700hPa wind according to the research method by Franklin(2003), PHRLM(2003), and Vickery and Skerlj(2005). Then we calculated wind speed at 10m level using the estimated wind speed at 300m level, and finally, peak 3.second gust on surface. The case period is from 18LST August 31 to 03LST September 1, 2002, when the typhoon Rusa in 2002 was the most intense. Among disaster prediction models in the US, Wind Field Module of PHRLM in Florida was used for the 2002 typhoon Rusa case. As a result, peak 3.second gust on the surface increased $10\sim20%$ in the typhoon's 700hPa wind speed.

  • PDF

고층건물 현장계측을 통한 거스트 계수 제안 (Suggestion of Gust Factor through Field Measurements of High-Rise Buildings)

  • 윤성원;김도현;김영문;김동원
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.69-76
    • /
    • 2008
  • 건물에 설치된 모니터링 시스템으로부터 기록된 바람과 구조물의 반응으로부터 평균풍속, 풍향, 난류강도, 거스트팩터를 산정하였다. 계측된 건물은 각각 속초와 부산에 위치한다. 거스트 계수와 난류강도사이의 관계를 이용하여 계측된 데이터로부터 이들 간의 상관관계식을 제안하였다. 계측된 데이터로부터 얻은 거스트 계수 관계식은 풍동실험과 고층건물설계의 타당성에 유용한 자료로 이용될 수 있다.

  • PDF

Wind-induced dynamic response and its load estimation for structural frames of circular flat roofs with long spans

  • Uematsu, Yasushi;Yamada, Motohiko
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.49-60
    • /
    • 2002
  • This paper describes a simple method for evaluating the design wind loads for the structural frames of circular flat roofs with long spans. The dynamic response of several roof models were numerically analyzed in the time domain as well as in the frequency domain by using wind pressure data obtained from a wind tunnel experiment. The instantaneous displacement and bending moment of the roof were computed, and the maximum load effects were evaluated. The results indicate that the wind-induced oscillation of the roof is generally dominated by the first mode and the gust effect factor approach can be applied to the evaluation of the maximum load effects. That is, the design wind load can be represented by the time-averaged wind pressure multiplied by the gust effect factor for the first mode. Based on the experimental results for the first modal force, an empirical formula for the gust effect factor is provided as a function of the geometric and structural parameters of the roof and the turbulence intensity of the approach flow. The equivalent design pressure coefficients, which reproduce the maximum load effects, are also discussed. A simplified model of the pressure coefficient distribution is presented.

EDISON Co-rotational Plane Beam Transient analysis solver를 이용한 위험 Gust profile 역-추적 알고리즘 개발

  • 정지섭;김세일;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.259-269
    • /
    • 2017
  • Gust load is a very important load factor in designing various structures of an aircraft and judging its stability. This is because the blast effect on the aircraft in operation increases the risk of damage to the structure of the aircraft and causes a negative impact such as shortening the fatigue life by generating vibration. Particularly in the case of wing, a change in angle of attack is caused by gust load, and an additional lift acts on the wing, thereby being exposed to various excitational environments. Severe structural damage to the aircraft may occur if the natural frequencies of the aircraft wing are close to or coincident with the frequencies of the gust load applied to the wing. Recent trends of research include flight dynamics analysis considering discontinuous gusts or structural optimization of the blades under gust load. A number of studies have been conducted to interpret gust load response in consideration of irregularities in gusts. In this paper, we tried to imagine the situation of the aircraft subjected to the gust load as realistic as possible, and proposed an algorithm to track back the critical gust profile according to given aircraft characteristics from the viewpoint of preliminary engineering prediction.

  • PDF