• Title/Summary/Keyword: Gumbel 혼합모형

Search Result 8, Processing Time 0.023 seconds

Evaluation of Flood Severity Using Bivariate Gumbel Mixed Model (이변량 Gumbel 혼합모형을 이용한 홍수심도 평가)

  • Lee, Jeong-Ho;Chung, Gun-Hui;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.725-736
    • /
    • 2009
  • A flood event can be defined by three characteristics; peak discharge, total flood volume, and flood duration, which are correlated each other. However, a conventional flood frequency analysis for the hydrological plan, design, and operation has focused on evaluating only the amount of peak discharge. The interpretation of this univariate flood frequency analysis has a limitation in describing the complex probability behavior of flood events. This study proposed a bivariate flood frequency analysis using a Gumbel mixed model for the flood evaluation. A time series of annual flood events was extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distribution and return period were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. The applicability of the Gumbel mixed model was tested by comparing the return periods acquired from the proposed bivariate analysis and the conventional univariate analysis.

Comparison of Three Parameter Estimation Methods for Mixture Distributions (혼합분포모형의 매개변수 추정방법 비교)

  • Shin, Ju-Young;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.45-45
    • /
    • 2017
  • 상이한 자연현상으로 발생된 자료들은 때때로 통계적으로 다른 특성을 가지는 경우가 있다. 이런 자료들은 다른 두 개 이상의 모집단에서 자료가 발생한 것으로 가정할 수 가 있다. 기존에 널리 사용되어온 분포형 모형의 경우 단일한 모집단으로부터 자료가 발생한다는 가정하에서 개발된 모형들로 위에서 언급한 자료들을 적절히 모의할 수 없다. 이런 상이한 모집단에서 발생된 자료를 모형화 하기 위해서 혼합분포모형(mixture distribution)이 개발되었다. 홍수나 가뭄 등과 같은 극치 사상의 경우 다양한 자연현상들로부터 발생하기에 혼합분포모형을 적용할 경우 보다 정확한 모의가 가능하다. 혼합분포모형은 두 개 이상의 비혼합분포모형들을 가중합하여 만들어진다. 혼합 분포모형의 형태로 인하여 기존의 분포형 모형의 매개변수 추정 모형으로 널리 사용되던 최우도법 (maximum likelihood method), 모멘트법(method of moment), 확률가중모멘트법 (probability weighted moment method) 등을 이용하여 혼합분포모형의 매개변수를 추정하는 것이 용이 하지 않다. 혼합분포모형의 매개변수 추정 방법으로는 Expectation-Maximization (EM) 알고리즘, Meta-Heuristic Maximum Likelihood (MHML) 방법, Markov Chain Monte Carlo (MCMC) 방법 등이 적용되고 있다. 현재까지 수자원 분야에서 사용되는 극치 자료를 혼합분포모형을 이용하여 모의할 때 매개변수 추정방법에 따른 특성에 대한 연구가 진행되지 않았다. 본 연구에서는 우리나라 연최대강우량 자료를 이용하여 혼합분포모형의 매개변수 추정방법 (EM 알고리즘, MHML 방법, MCMC 방법) 들의 특성들을 비교 분석하였다. 혼합분포모형으로는 Gumbel-Gumbel 혼합분포 모형을 적용하였다. 본 연구의 결과는 향후 혼합분포모형을 이용한 연구에 좋은 기초자료로 사용될 수 있을 것으로 판단된다.

  • PDF

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.

Evaluation of Extreme Flood Events Using Bivariate Flood Frequency Analysis (이변량 홍수빈도해석을 이용한 극한홍수사상 평가)

  • Lee, Jeong-Ho;Chung, Gun-Hui;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1467-1471
    • /
    • 2009
  • 홍수사상은 크게 첨두홍수량, 홍수용적, 지속기간 등과 같은 서로 상관된 세 가지 요소로 구성되어 있다. 그러나 그동안 홍수의 규모와 크기를 판단하고 예측하기 위하여 수행되어 온 홍수빈도 해석에서는, 서로 상관되어있는 요소들 간의 관계를 고려하지 않은 채 주로 첨두홍수량 하나만을 가지고 단변량 빈도 해석을 수행하였다. 이와 같은 단변량 홍수빈도 해석은 특정 홍수의 특성을 종합적으로 표현하는 데 한계를 가지고 있다. 따라서 본 연구에서는 홍수빈도 해석에 있어 첨두홍수량뿐만 아닌 홍수용적까지도 함께 고려하였다. 소양강댐의 35개년 일유입량 자료를 대상으로 홍수사상을 각각의 강우량 자료와 연계하여 분리한 후 Gumbel 혼합모형을 적용하여 이변량 홍수빈도 해석을 수행함으로써 과거의 극한 홍수사상을 평가 분석하였다. 이변량 빈도해석을 수행하여 홍수사상 요소들 간의 결합분포, 결합 재현기간 등을 추정하였다. 단변량 홍수빈도 해석 결과와 비교함으로써 특정 홍수에 대한 홍수심도를 분석하는 등 극한 홍수사상 평가를 위한 이변량 홍수빈도 해석기법의 적용성에 관하여 검토하였다. 이러한 연구 결과는 기존의 제방 중심 치수사업의 대안으로 제시된 유역종합치수계획에서 선정된 다양한 홍수방어 시설들의 설계 및 운영, 치수효과 평가 등에 유용하게 적용될 수 있을 것이다.

  • PDF

Evaluation of Flood Events Considering Correlation between Flood Event Attributes (홍수사상 요소의 상관성을 고려한 홍수사상의 평가)

  • Lee, Jeong Ho;Yoo, Ji Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.257-267
    • /
    • 2010
  • A flood event can be characterized by three attributes such as peak discharge, total flood volume, and flood duration, which are correlated each other. However, the amount of peak discharge is only used to evaluate the flood events for the hydrological plan and design. The univariate analysis has a limitation in describing the complex probability behavior of flood events. Thus, the univariate analysis cannot derive satisfying results in flood frequency analysis. This study proposed bivariate flood frequency analysis methods for evaluating flood events considering correlations among attributes of flood events. Parametric distributions such as Gumbel mixed model and bivariate gamma distribution, and a non-parametric model using a bivariate kernel function were introduced in this study. A time series of annual flood events were extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distributions and return periods were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. Applicabilities of bivariate flood frequency analysis were examined by comparing the return period acquired from the proposed bivariate analyses and the conventional univariate analysis.

Estimating Quantiles of Extreme Rainfall Using a Mixed Gumbel Distribution Model (혼합 검벨분포모형을 이용한 확률강우량의 산정)

  • Yoon, Phil-Yong;Kim, Tae-Woong;Yang, Jeong-Seok;Lee, Seung-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.263-274
    • /
    • 2012
  • Recently, due to various climate variabilities, extreme rainfall events have been occurring all over the world. Extreme rainfall events in Korea mainly result from the summer typhoon storms and the localized convective storms. In order to estimate appropriate quantiles for extreme rainfall, this study considered the probability behavior of daily rainfall from the typhoons and the convective storms which compose the annual maximum rainfalls (AMRs). The conventional rainfall frequency analysis estimates rainfall quantiles based on the assumption that the AMRs are extracted from an identified single population, whereas this study employed a mixed distribution function to incorporate the different statistical characteristics of two types of rainfalls into the hydrologic frequency analysis. Selecting 15 rainfall gauge stations where contain comparatively large number of measurements of daily rainfall, for various return periods, quantiles of daily rainfalls were estimated and analyzed in this study. The results indicate that the mixed Gumbel distribution locally results in significant gains and losses in quantiles. This would provide useful information in designing flood protection systems.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.