우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내린다. 이러한 짧은 기간에 집중적으로 내리는 강수량 조건하에 수공구조물을 설계할 경우 대부분 극치빈도분석을 활용한다. 특히 우리나라의 경우 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수량의 특징이 급격히 변하고 있으며, 우리나라 연강수량 특징도 바뀌고 있다. 즉, 기존의 단일 분포형으로 재현이 가능했던 수문기상 자료들이 혼합분포형의 특징을 가지게 되었으며 이러한 변화를 고려할 수 있는 극치빈도분석 개발이 요구되고 있는 실정이다. 본 연구에서는 두 개 이상의 첨두를 가지는 형태의 극치강수량 자료에 대해서 기존의 단일 Gumbel 분포형 기반 극치빈도분석과 혼합 Gumbel 분포형 기반의 극치빈도분석 결과를 비교하였다. 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion (BIC) 값을 비교하였다. 분석한 결과, 앞서 제안된 혼합 Gumbel 분포형은 하나의 첨두를 가지는 단일 Gumbel 분포형에서 반영되지 못한 꼬리(tail)부분의 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인할 수 있었다. 결과적으로 설계강수량을 추정할 때 보다 신뢰성있는 접근이 가능하였다. 이러한 점에서 우리나라 극치강우자료 분석시 기존 단일분포기반의 빈도해석기법에 대안으로 적용이 가능할 것으로 판단된다.
태풍 및 지형에 대한 컴퓨터 시뮬레이션과 기상관측자료에 대한 분석을 통해 장대교량의 가설위치에서 발생할 수 있는 풍환경을 분석하고 설계풍속을 산정하였다. 설계풍속의 산정은 내풍 설계를 위한 하중을 결정하는 과정으로 내풍설계의 기본이 되는 부분이다. 풍환경 분석 과정은 Monte Carlos(이하 MC) 태풍 시뮬레이션 분석, Gumbel 극치분석, CFD 지형효과 분석으로 구성된다. MC 태풍시뮬레이션 분석을 통해 태풍시기(6~10월)의 재현주기별 강풍발생빈도를 도출하였다. Gumbel 극치분석을 통해 인근의 기상관측자료로부터 전년도에 대한 재현주기별 강풍발생빈도를 도출하였다. CFD 지형효과 분석을 통해 분석대상지역의 주변지형으로 인한 풍속증감효과를 분석하였다. 각 결과를 종합하여 보수적인 재현주기별 설계풍속을 산정하였다.
연안 및 항만구조물의 설계에서 심해 설계파는 매우 중요한 환경인자이다. 특히, 심해설계파고의 분포 정보는 최근 부각되고 있는 신뢰성 설계에 필수적인 요소이다. 본 연구에서는 한국해양연구원(2003)에서 제시한 1979년부터 1998년까지의 한국연안 67개 지점의 16방향별 최대 유의파 산출자료를 이용하여 극치분포 분석을 수행하였다. 특성분석에 사용된 극치분포함수는 Weibull, Gumbel, Log-Pearson Type-III, Lognormal 분포이며, 각 분포함수의 매개변수는 모멘트법, 최우도법 그리고 확률가중모멘트법으로 추정하였다. 또한, 극치분포함수의 적합성은 95% 신뢰도 수준으로 $\chi$$^2$및 K-S 검정을 실시하였다. 그 결과, 한국연안의 심해 설계파고는 Gumbel 분포형이 가장 적합한 모형으로 파악되었으며, 최적 추정된 매개변수 및 재현기간 50년에 대한 심해 설계파고 정보를 제시하였다.
우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내리며 이러한 짧은 기간에 집중적으로 내리는 강수패턴 조건하에서 수공구조물 설계시 대부분 극치빈도분석을 활용한다. 우리나라의 경우 단일 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수패턴의 특징이 급격히 변하고 있으며, 우리나라의 강수패턴 또한 바뀌어가고 있다. 연강수량의 대부분은 태풍과 장마로 인한 강수량으로 이루어져 있고, 일반적으로 두 개의 모집단으로 이루어진 형태를 보인다. 앞선 연구에서 두 개 이상의 첨두를 가지는 형태의 연최대강수량 자료에 대해 8개의 지속시간별(1, 2, 3, 6, 9, 12, 18, 24hr)로 Bayesian 기법의 단일 Gumbel 분포형과 혼합 Gumbel분포형 기반의 극치빈도분석 결과를 비교하였고, 혼합 Gumbel 분포형이 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인하였다. 본 연구에서는 이상기후로 인한 강수량의 특징의 급격한 변화에 일정한 패턴이 있음을 가정하고 이중첨두의 연 최대일강수량 자료에 대해 혼합 Gumbel 분포형 기반 비정상성 빈도분석을 실시하였다. 정상성 빈도분석과의 비교를 위해 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion(BIC) 값을 비교하였다. 비정상성일 경우의 BIC 값이 정상성일 경우 보다 작게 산정되었고, 강수패턴이 경향성을 가지는 것으로 판단할 수 있었다. 비정상성 혼합 Gumbel 분포형 모델은 최근 급격한 강수패턴의 변화에 대한 대응책으로서 활용성이 높을 것으로 기대된다.
연안 및 항만시설물의 설계에서 심해 설계파 및 풍속은 매우 중요한 설계 파라메타이다. 특히, 최근 부각되고 있는 방재공학 측면에서 이러한 정보에 대한 분석단계는 필수적이라 할 수 있다. 본 연구에서는 완도관측소의 기상연보에서 제시한 1978년부터 2003년까지의 풍속자료와 한국해양연구원 파랑정보시스템에서 제공하는 16방향별 최대 유의파 산출자료를 이용하여 극치분석을 수행하였다. 특성분석에 사용된 극치분포함수는 Weibull, Gumbel, Log-Pearson Type-III, Normal, Lognormal, Gamma 분포이며, 각 분포함수의 매개변수는 모멘트법, 최우도법 그리고 확률 가중 모멘트법으로 추정하였다. 또한, 극치분포함수의 적함성은 5${\%}$의 유의수준 즉, 95${\%}$신뢰도 수준으로 $x^{2}$및 K-S 검정을 실시하였다. 그 결과, 한국 남서연안의 심해 설계파고는 Gumbel 분포형이 가장 적합한 모형으로 파악되었으나, 본 연구의 대상영역에 적합한 모형은 각각의 극치자료에 따라 선정된 확률분포에 의해 다르게 나타났다.
연안 및 항만구조물의 설계에서 최극 고조위는 매우 중요한 환경인자이다. 특히, 최극 고조위의 분포정보는 최근 부각되고 있는 신뢰성 설계에 필수적인 요소이다. 본 연구에서는 국립해양조사원에서 제시한 한국연안 주요 23개 검조소의 최극조위자료를 이용하여 극치분포 분석을 수행하였다. 특성분석에 사용된 극치분포함수는 Generalized Extreme Value, Gumbel 그리고 Weibull 분포이며, 각 분포함수의 매개변수는 모멘트법, 최우도법 그리고 확률가중모멘트법 등 3가지방법으로 추정하였다. 또한, 극치분포함수의 적합성은 95% 신뢰도 수준으로 $X^2$ 및 K-S 검정을 실시하였다. 그 결과, 23개 검조소의 최극 고조위는 Gumbel 분포형이 가장 적합한 모형으로 파악되었으며, 최적 추정된 매개변수 및 재현기간별 최극 고조위 정보를 제시하였다. 심 등(1992)이 제시한 인천, 제주, 여수, 부산, 묵호에 대한 극치해면값은 본 논문에서 산정한 결과에 비하여 작게 나타났다.
본 논문에서는 극치수문자료의 경향성 분석 개념을 소개하고 이를 빈도해석과 연계시켜 해석하는 방법론을 제시하고자 Gumbel 극치분포를 기반으로, 시간변화에 의한 수문빈도 특성 변화를 모의할 수 있는 Bayesian 모형을 구성하였다. 사후분포의 매개변수는 깁스표본법에 의한 Markov Chain Monte Carlo Simulation을 통해 추정하였으며, 이를 통해 경향성을 고려한 확률강우량과 불확실성 구간을 추정하였다. 또한 경향성을 고려한 확률강우량이 현재 알려진 확률강우량을 초과할 확률을 통해 동적 위험도 해석과정을 소개하였으며, 현재의 경향성에 대해서 시간에 따라 연속으로 추정된 확률밀도함수를 비교하여 수문학적 위험도가 증가할 수 있음을 모의결과를 통해 확인하였다. 이와 더불어 단순히 경향성의 존재여부를 확인하는데 그치지 않고 사후분포를 통해서 통계적 추론을 수행함으로써 경향성에 대한 통계학적인 유의성을 정량적으로 평가할 수 있었다.
극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.
In this study, statistical analysis under both stationary and non-stationary climate was conducted for rainfall data measured in Seoul. Generalised Extreme Value (GEV) distribution and Gumbel distribution were used for the analysis. Rainfall changes under the non-stationary climate were estimated by applying time variable (t) to location parameter (${\xi}$). Rainfall depths calculated in non-stationary climate increased by 1.1 to 6.2mm and 1.0 to 4.6mm for the GEV distribution and gumbel distribution respectively from those stationary forms. Changes in annual maximum rainfall were estimated with rate of change in the location parameter (${\xi}1{\cdot}t$), and temporal changes of return period were predicted. This was also available for re-evaluating the current sewer design return period. Design criteria of sewer system was newly suggested considering life expectance of the system as well as temporal changes in the return period.
홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.