• Title/Summary/Keyword: Guided mode

Search Result 261, Processing Time 0.027 seconds

Identification of the Properties of Soils and Defect Detection of Buried Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 토양 특성 규명 및 지하매설 배관 결함 검출)

  • Park, Kyung-Jo;Kim, Chung-Yup
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear (S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fundamental torsional mode that propagate along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using fundamental torsional mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities are evaluated as a function of depths. Also the characteristics of the reflected signal from the defects are examined and the reflection coefficients are calculated for identifying the relation between defect sizes and the magnitude of the reflected signal.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II) (단부 경계조건을 고려한 매설관의 동적응답 해석 (II))

  • Lee, Byong-Gil;Park, Byung-Ho;Jeong, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

Development of an EMAT System for Detecting flaws in Pipeline (배관결함 검출을 위한 EMAT 시스템 개발)

  • Ahn, Bong-Young;Kim, Young-Joo;Kim, Young-Gil;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • It is possible to detect flaws in pipelines without interruption using all EMAT transducer because it is a non-contact transducer which can transmit ultrasonic waves into specimens without couplant. And it ran easily generate guided waves desired in each specific problem by altering the design of coil and magnet. In the present work, EMAT systems have been fabricated to generate surface waves, and selectively the plate wave of $A_1\;or\;S_1$ mode. The surface wave of 1.5MHz showed a good signal-to-noise ratio without distortion in its propagation along a pipeline, while the $S_1$ mode of 800kHz and the $A_1$ mode of 940kHz were distorted according to their dispersive properties. The wider the excitation pulse becomes, the better the mode selectivity of the plate waves becomes. A pipe of 256mm inner diameter and 5.5m thickness with 5 flaws was used for comparing the flaw detectability among the modes under consideration.

Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

  • Cho, Seung-Hyun;Kwon, Hyu-Sang;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.512-518
    • /
    • 2008
  • Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified.

Design and Development of 30W Military Grade DC-DC Converter for Guided Weapon and Aircraft (유도무기 및 항공기 탑재장비용 30W급 군사용 DC-DC 변환장치 개발)

  • Park, Sang-Min;Joo, Dong-Myoung;Chae, Soo-Yong;Kim, Hyung-Jung;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1341-1350
    • /
    • 2017
  • In this paper, a high reliability 30W DC-DC converter is designed considering military standard (MIL-STD) for military applications such as guided weapon and aircraft. The performances and specifications of conventional military grade DC-DC converter are practically analyzed. The requirements for military grade DC-DC converter are established in consideration of MIL-STD and analysis results of conventional product. Two isolated DC-DC converter, forward and fly-back converter, are designed and compared to determine topology. From experimental results under various operating conditions, the forward topology satisfied performances and specifications of MIL-STD for military DC-DC converter.

A Study on the Free Vibration Responses of Various Buried Pipelines (각종 매설관의 자유진동거동에 관한 연구)

  • Jeong, Jin-Ho;Park, Byung-Ho;Kim, Sung-Ban;Kim, Chun-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1340-1347
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a free vibration analysis. End boundary conditions considered herein consist of free ends, fixed ends, and fixed-free ends in the axial and the transverse direction. Guided ends, simply supported ends, and supported-guided ends were added to the transverse direction. The buried pipeline was regarded as a beam on an elastic foundation and the ground displacement of sinusoidal wave was applied to it. Natural frequencies and mode shapes were determined according to end boundary conditions. In addition, the effects of parameters on the natural frequency were evaluated. The natural frequency is affected most significantly by the soil stiffness and the length of the buried pipelines. The natural frequency increases as the soil stiffness increases while it decreases as the length of the buried pipeline increases. Such behavior appears to be dominant in the axial direction rather than in the transverse direction of the buried pipelines.

  • PDF

A Study on the supermode discrimination, radiation angles, and modal stability of index-guided laser arrays (굴절율 도파 어레이의 모드 선별성, 방사빔폭 및 모드 안정성에 관한 연구)

  • 권기영;권영세
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.85-93
    • /
    • 1994
  • We have studied the effect of channel and/or spacing chirpings on the near field and near field intensity patterns, modal gains and radiation angles of 6 supermodes in the index-guided laser arrays with 6 channels, on the basis of the coupled mode theory. The spacings between channels can be indenpendent parameters for control of the radiation angle. It is found that an asymmetrically v channel-chirped array has both a smaller radiation angle and better supermode discrimination characteristics than a uniform array. Comparing two approaches for enhancing modal stability in point of supermode discrimination characteristics, approach I which increases the coupling cofficient between the outer-most waveguides at each end of an otherwise uniform array, has superior discrimination characteristics to the approach II which increases the propagation constant for the end elements with the same coupling between neighbor elements. Approach III which has a narrower spacing between the outer-most waveguides at one end and a wider channel width of the outer-most waveguide at another end, gets a narrower radiation angle than the approach I and good supermode discrimination characteristics by applying optimized gain profiles.

  • PDF

The fabrication of InGaAsP/InP RWG(ridge waveguide) MQW-LD by the vertical LPG system (수직형 LPE장치를 이용한 InGaAsP/InP RWG(Ridge Waveguide) MQW-LD제작)

  • 박윤호;오수환;하홍춘;안세경;이석정;홍창희;조호성
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.150-156
    • /
    • 1996
  • RWG MQW-LD has been made with our vertical LPE system from the optimal design condition for the RWG MQW-LD to be activated as weakly index-guided LD. Through several experiments we have established the growth condition which can be used through to grow the MQW-DH wafer and to control the thickness of MQW layer to ~200$\AA$. 4 ${\mu}{\textrm}{m}$-thickness of the ridge pattern has been formed through the photolithographic process on the MQW-DH wafer grown by the former condition, and then we have fabricated the RWG MQW-LD using it. From the result of measuring the electro-optical characteristics we can make sure that it can be lasing as lasing as laterally single mode at even more than $2.7I_{th}$.

  • PDF

Bio-guided Isolation of Natural Iron Chelators from Mangifera indica Leaves and their Comparative Study to Desferal®

  • Suliman, Sara N.;ElNaggar, Mai H.;Elsbaey, Marwa;El-Gamil, Mohammed M.;Badria, Farid A.
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Through bio-guided isolation, two natural iron chelators were isolated from Mangifera indica L. leaves, identified as mangiferin (1) and iriflophenone-3-C-𝛽-D-glucoside (2). Their iron-chelating activity was compared to that of Desferal® using bipyridyl assay and EDTA as a standard. Mangiferin showed the highest activity with IC50 value of 0.385 mM (162.85 ㎍/mL). Furthermore, two combinations of mangiferin with Desferal® (M-D) and iriflophenone-3-C-𝛽-D-glucoside (M-I) were evaluated. The results showed that mangiferin potentiated the iron chelation activity of Desferal® about 46%, also that M-I combination is a promising candidate formula for iron chelation therapy. In addition, mangiferin and Desferal-iron complexes were prepared and characterized by IR, UV, and Mass spectra to compare their mode of chelation to iron. Their structural stability was studied by DFT calculations. Furthermore, they displayed increased ABTS antioxidant activity when bound to iron as compared to their free form, which enhances their pharmacological importance.

Knowledge-guided artificial intelligence technologies for decoding complex multiomics interactions in cells

  • Lee, Dohoon;Kim, Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.239-249
    • /
    • 2022
  • Cells survive and proliferate through complex interactions among diverse molecules across multiomics layers. Conventional experimental approaches for identifying these interactions have built a firm foundation for molecular biology, but their scalability is gradually becoming inadequate compared to the rapid accumulation of multiomics data measured by high-throughput technologies. Therefore, the need for data-driven computational modeling of interactions within cells has been highlighted in recent years. The complexity of multiomics interactions is primarily due to their nonlinearity. That is, their accurate modeling requires intricate conditional dependencies, synergies, or antagonisms between considered genes or proteins, which retard experimental validations. Artificial intelligence (AI) technologies, including deep learning models, are optimal choices for handling complex nonlinear relationships between features that are scalable and produce large amounts of data. Thus, they have great potential for modeling multiomics interactions. Although there exist many AI-driven models for computational biology applications, relatively few explicitly incorporate the prior knowledge within model architectures or training procedures. Such guidance of models by domain knowledge will greatly reduce the amount of data needed to train models and constrain their vast expressive powers to focus on the biologically relevant space. Therefore, it can enhance a model's interpretability, reduce spurious interactions, and prove its validity and utility. Thus, to facilitate further development of knowledge-guided AI technologies for the modeling of multiomics interactions, here we review representative bioinformatics applications of deep learning models for multiomics interactions developed to date by categorizing them by guidance mode.